
Recovery Protocols For Replicated Databases - A Minimal Survey ∗

Luis H. Garcı́a-Muñoz, J. Enrique Armendáriz-Iñigo, Francisco D. Muñoz-Escoı́
Instituto Tecnológico de Informática, Valencia, España

{lgarcia, armendariz, fmunyoz}@iti.upv.es
Technical Report ITI-ITE-06/07

In replicated databases, the same data are stored in dif-
ferent sites distributed in different places. In the last decade
they have been widely used to increase performance, avail-
ability and fault tolerance. When a server site fails, the
clients can redirect their transactions to another available
one, but possibility of recovering sites that have failed must
exist. When recovery protocols are designed it is necessary
to consider the characteristics of the replication protocols
developed.

In this work we make an analysis for the recovery pro-
tocols that were proposed in the last years, to determine the
best protocol in each case and to identify the kind of prob-
lems they solve and the kind of problems that leave uncov-
ered. With this information we intend, in a future work, the
development of new recovery protocols that combine their
best characteristics.

With the development of Group Communication Sys-
tems (GCS) and virtual synchrony [5], synchrony points be-
tween failures, sites recovery and the delivered set of mes-
sages to available sites can be generated. GCS provides
membership service and reliable multicast. The member-
ship service maintains a list of currently active and con-
nected sites, providing with this the view concept.

The recovery task basically consists in transferring the
information lost during the failure interval, from one or
more active to one or more recovering sites, without alter-
ing the service capability of the system. The recovery proto-
col is usually integrated into the applied replication protocol
and must consider:

1. The way database state is transferred: sending the en-
tire database, using object versions or resending lost
messages.

2. Concurrency control mechanism applied: optimistic
or pessimistic, unique or distributed manager, and
whether it is version based or not.

3. The way to distribute recovery work: it can be dis-
tributed or centralized.

∗This work has been funded by the MCYT and the MEC under projects:
TIC2003-09420-C02 and TIN2006-14738-C02.

According to [9] when the GCS is used to transfer the
recovery information it is only possible to send the entire
database, because the system does not know which data
have been changed since failure occurs. It has the advan-
tages of easy implementation and does not fully suspend
system execution, only write operations are deferred. Its
disadvantages are that database transfer is made under a
transactional scheme, where a read lock is set on data until
reception on recovering site is confirmed, and such lock is
applied to the entire database. Additionally when a site was
in a short-time failure full database transfer may be highly
inefficient.

The second choice suggested in [9] is to use remote
backup utilities from the database system. The following
alternatives are proposed: a) Checking version numbers, b)
Restricting the set of objects to check, c) Filtering the log,
d) Lazy data Transfer. Additionally usage of Enriched View
Synchrony (EVS) is proposed. Using EVS the reconfigura-
tion process is encapsulated, and the database system has a
more realistic picture of what is happening in the system.

In [6], recovery protocols based on GCS are proposed,
when replication protocols: Broadcast Writes, Delayed
Broadcast and Single Broadcast Protocol, described in [1]
are used. These recovery protocols are: Single Broadcast
Recovery, Broadcast Writes Recovery, and Delayed Broad-
cast Recovery, where two alternatives are presented: Log
Update Method and Augmented Broadcast Method. The
main advantage is that it can support the majority of dis-
tributed database transactions types without data version-
ing. The disadvantages for the first and third case is that ad-
ditional work is given to on process transaction sites (avoid-
ing the work on loggers) and that they require a change
in their lock management algorithm. When the Log Up-
date Method is used with Broadcast Writes, the Logger
must remove messages from the log for transactions that
are aborted for any reason, not only for those that have an
explicit abort message or whose commit message was re-
jected.

In [8], parallel recovery is proposed by means of proce-
dures that define conflict classes. Recovery is based on DB-



partitions. Its advantages are that can be extended to work
in parallel and with this, optimize the transfer time and dis-
tribute the recovering task overload. Transactions are not
processed only in the view change, when sites are blocked.
Its disadvantages are that transactions can only be executed
on the partition master site. When the failure period is large,
the amount of information to transfer will be abundant.

In [7], a lazy recovery protocol for a configurable repli-
cation protocol that can make updates eager, lazy or in a
hybrid way is presented. The advantages of this protocol
are: the recovery task is fully supported by the hybrid repli-
cation protocol, thus the recovery is part of the basic al-
gorithm, updates are performed until the recovering site ac-
cesses stale data, there is no need of locking objects because
it uses object versions and the transaction abortion rate is
small. The disadvantage is: the transaction service time is
usually greater than in pure lazy replication protocols.

The work proposed in [3] is a framework for reliable
broadcast protocols that are used as a basis for database
replication protocols. Its objective is to manage the logging
of missed update messages in the broadcast protocol core,
providing with this, automatical recovery in short-term fail-
ures, but discarding the log and notifying in case of long-
term failures. The main advantages of this protocol are that
it combines the version-based and log-based recovery de-
pending on which one is the best to use, it does not restrict
to one transference model and can take advantage of each
one in its case. It is gained a minimal blocking time to repli-
cas involved in log-based recovery. The disadvantages are
that it is necessary to maintain related information to both
recovery methods. Transaction service time is increased be-
cause all messages are stored in persistent storage.

FOBr [4] complements the replication protocol FOB,
which is an optimistic protocol with eager updates that use
membership service provided by GCS. Its advantages are
that it minimizes the transferred information amount, its re-
covery work is distributed, it allows transaction execution
during recovery period, and that it uses a small amount of
space for storage. The disadvantages are that it comple-
ments a replication protocol with non standardized isola-
tion levels; for each committed transaction, the objects in
the WriteSet must be recorded if there was a failure site and
this may reduce the performance during failure intervals.

J.E. Armendáriz in [2] proposes a recovery protocol for
three eager update replication protocols. The general idea
for recovery is based on forming a database dynamic parti-
tion (DB-partition) that contains the lost elements, grouped
by lost views. The main advantages are that the recov-
ery work is distributed, the DB-partition in a recoverer site
can be released even when the recovery process is not con-
cluded, transactions can be committed in recoverer sites
while it has not interference on the DB-partition, recoverer
site can start to accept transactions as soon as DB-partitions

are set in it. The disadvantage is that if DB-partitions are
defined on the basis of each view modified objects, an ob-
ject may be transferred several times, to avoid this we must
”compact” the DB-partitioning.

Once this set of protocols has been surveyed, as a con-
cluding remark we advise to consider recovery algorithms
that use version-based management and that distribute the
recovery work among available sites to balance the work-
load during the recovery process. Very few replicated
database recovery systems are capable to combine these
technics to reduce recovery times. When it has been par-
tially possible (as in [8], [7]), it was because replication
protocols had some special characteristic (the use of a pri-
mary copy schema in [8], that reduces flexibility and com-
promises fault tolerance; the use of lazy updates in [7], that
may compromise consistency). The work presented in [2]
could be a good exception, but it has not presented perfor-
mance measurements that confirm its good theoretical per-
formance. This analysis will be used as a basis for new
recovery protocols design that try to combine the analyzed
protocols advantages.

References

[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Ex-
ploiting atomic broadcast in replicated databases. In EuroPar,
pages 496–503. LNCS vol. 1300. Springer, 1997.

[2] J. E. Armendáriz. Design and Implementation of Database
Replication Protocols in the MADIS Architecture. PhD thesis,
Univ. Pública de Navarra, Pamplona, Spain, Feb. 2006.

[3] F. Castro, J. Esparza, M. I. Ruiz, L. Irún, H. Decker, and F. D.
Muñoz. Clob: Communication support for efficient replicated
database recovery. In PDP, pages 314–321, 2005.

[4] F. Castro, L. Irún, F. Garcı́a, and F. D. Muñoz. Fobr: A
version-based recovery protocol for replicated databases. In
PDP, pages 306–313, 2005.

[5] G. Chockler, I. Keidar, and R. Vitenberg. Group communica-
tion specifications: A comprehensive study. In ACM Comput-
ing Surveys 33(4), pages 1–43, 2001.

[6] J. Holliday. Replicated database recovery using multicast
communication. In NCA. IEEE-CS Press, 2001.

[7] L. Irún, F. Castro, F. Garcı́a, A. Calero, and F. Muñoz. Lazy
recovery in a hybrid database replication protocol. In XII Jor-
nadas de Concurrencia y Sistemas Distribuidos, 2004.

[8] R. Jiménez, M. Patiño, and G. Alonso. An algorithm for non-
intrusive, parallel recovery of replicated data and its correct-
ness. In SRDS, pages 150–159. IEEE-CS Press, 2002.

[9] B. Kemme, A. Bartoli, and Ö. Babaoglu. Online reconfigura-
tion in replicated databases based on group communication.
In DSN, pages 117–130. IEEE-CS Press, 2001.


