Adding Amnesia Support and Compacting Mechanisms
to Replicated Database Recovery

L. H. Garcia-Mufoz, R. de Juan-Marin, J. E. Armendéﬁligo and F. D. Mufoz-Escoi

Instituto Tecnoldgico de Informatica - Universidad Ratnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{lgarcia, rjuan, armendariz, fmunyp@iti.upv.es

Technical Report TR-ITI-ITE-07/08

TR-ITI-ITE-07/08

Adding Amnesia Support and Compacting Mechanismsto Replicated Database Recovery

Luis H. Garcia-Mufioz et al.:

Adding Amnesia Support and Compacting Mechanisms to
Replicated Database Recovery

L. H. Garcia-Mufioz, R. de Juan-Marin, J. E. Armendéiiigo and F. D. Mufioz-Escof

Instituto Tecnolbgico de Informéatica - Universidad Betinica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/08

e-mail: {lgarcia, rjuan, armendariz, fmunyp@iti.upv.es

Abstract

Nowadays eager update everywhere replication protocelsvately used in replicated databases.
They work together with recovery protocols in order to pdavhighly available and fault-tolerant infor-
mation systems. This paper provides a general way for adatimgesia support and compacting mech-
anisms to these recovery protocols. The idea of these eemamts is to consider on one hand a more
realistic failure model scenario which fits better with tlealrworld and on the other hand to minimize
the recovery cost obtaining then a more efficient recovenyggol.

1 Introduction

Database replication consists in maintaining identicpie®of a given database at multiple network nodes.
This provides a higher performance, clients access theal leeplica or are forwarded to the less loaded
one; and availability: whenever a node fails, its assodielients are silently redirected to another available
one. Replication protocols can be designed for eager orrigljcation [12], and for executing updates
in a primary copy or at all node replicas [18]. With eager icgilon we can keep all replicas exactly
synchronized at all nodes, but this could have an expensste With the lazy alternative we can introduce
replication without severely affecting performance, kiutan compromise consistency. Many replication
protocols are based on eager update everywhere wighdeone, write all available (ROWAA) approach.
As we have briefly highlighted before, these replicatiort@eols provide high availability, in the sense that
clients executing transactions at a node that fails arespamently forwarded to another available replica.
However, only a few of them deal with the possible reconoectif the failed node, which is managed
by recovery protocols [2, 5, 6, 14, 15, 16, 17]. The aim of tkeowery protocols is to bring failed or
temporarily disconnected nodes back into the network &sfiuhctional peers, by reconciling the database
state of these recovering nodes with that of the active no@les could be done by logging transactions
and transferring this log to recovering nodes so they canga®missed transactions, or transferring the
current state of the objects that have been updated in thbaks since the recovering node failed.

In the design and development of a generic recovery proibhecessary to: consider the charac-
teristics of the used replication protocol; take into actathat the recovery process must be as fast as
possible; have a minimum interference with the user traieas; and, to introduce the minimum system
overhead.

Previous works in this area include recovery protocolséptication protocols that make use of Group
Communication Systems (GCS) [7] and virtual synchrony gHriched view synchrony [17], recovery
based on logs [14], parallel recovery [16], lazy recoveldi[Tecovery algorithms based on configurable
logging for broadcast protocols [5], version-based recg[8§ and protocols that intend to be a little more
general for a group of replication protocols based on eagéate everywhere and ROWAA [2].

This paper is focused in the recovery protocol for eager tgpdsaerywhere replication protocols,
proposing some optimizations to the work presented in [A}esSe enhancements include amnesia sup-
port, and a better performance reducing the amount of daav® in the actions done before recovering
and the amount of data to transfer at recovering time. Tha idag in the last case is to compact recovery
data eliminating redundant information.

The main contributions of this paper are: to add supporttieramnesia in the original protocol, to
improve the performance of the original protocol compagtime necessary information for the recovery.
In addition, we provide a table with the results of a simwlatiwhere the advantages of the compacting
approach are verified.

The rest of this paper is distributed as follows. In Sectione€2provide the system model. Section
3 deals with the basic recovery protocol. In Section 4 we @rphe necessary actions for the amnesia
support. Next, Section 5 relates the process of compacaticmyvery information. Later, Section 6 shows
the simulation results resumed in a table, followed by theted works in Section 7. In the final Section 8,
we provide our conclusions.

2 System Model

The original recovery protocol has been designed for datbeplicated systems composed by several
replicas —each one in a different node—. These nodes badangartially synchronous distributed system:
their clocks are not synchronized but the message transmigsie is bounded. The database state is fully
replicated in each node.

This replicated system uses a group communication sysSB%)([7]. Point-to-point and broadcast
deliveries are supported. The minimum guarantee provided FIFO and reliable communication. A
group membership service is also assumed, Wimwvs in advance the identity of all potential system
nodes. These nodes can join the group and leave it eithacibypbr implicitly by crashing, raising aiew
change event. Therefore, each time a membership change happens, i.&nmanthe failure or the recovery
of one of the member nodes occurs, it supplies consistentnrgtion about the current set of reachable
members as a view. The group membership service combinbdhaGCS providesVirtual Synchrony
[4] guarantees, which is achieved usisapding view delivery multicast [7] enforcing that messages are
delivered in the view they were sent. gimary component [7] model is followed in case of network
partitioning.

The replicated system assumes thash-recovery with partial-amnesia model instead of the crash or
fail-stop model [13] for node failures. This implies that@ntdated node must be recovered from two “lost
of updateness”: forgotten state and missed state. Thismgugn supports a more realistic and precise
way to perform the recovery process. So the assumed modelsatb recover failed nodes from their
previous crashing state maintaining their assigned noeletificrs. Consequently, when a node crashes,
every active node must abort any transaction started byailesifnode whose commit messages have not
been yet delivered. A similar behavior is adopted when tistesy can not go on because the progress
condition has been lost. In this situation, the nodes in miinge.g. disconnected) must also abort the
started transactions whose commit message has not beeeliyeted. Thus, the whole activity that was
not committed during the working life is aborted.

3 Original Recovery Protocol

The original recovery protocol presented in [1] has beemdi for eager update everywhere database
replication protocols and proposes the us®8&fpartitions. In fact, it was originally designed for pro-
viding recovery support for thERP and TORPE [2] replication protocols. They are ROWAA, which use
voting techniques and propagate transaction writesetsrefbre, for each transaction that performs up-
dates, its replication execution is performed in two messafirst it is broadcast themote message which
propagates the updates and secondly it is spreacbthmit message which confirms the replicated execu-
tion. Their main difference is that the first one is based tialske but unordered multicast using a dynamic

deadlock prevention scheme, while the last one is basedtalotmler broadcast. This proposed recovery
protocol can be outlined as follows:

e The system has a database table nafmiEth'S E D, which maintains all the information that will
be needed for recovery purposes. Each time a new view isllatsta new entry is inserted in
the MISSED table if there are failed nodes. Each entrylfi/ SSED table contains: the view
identifier, the identifiers of crashed nodes in this vie$/+* ES—, and the identifiers list of data
items modified during this view@I D_LIST-. The two first ones are established at the beginning
of the view, while the last one increases as long as the viessgza

e When a set of crashed nodes reconnects to the replicatesirsytste recovery protocol will choose
one node as theecoverer with a deterministic functiorldest alive based on the metadata of the
recovery protocol. Then in a first step theeoverer transfers the metadata recovery information to
all reconnected nodes. This metadata information contétresidentifiers of modified objects, and
the crashed node identifiers in each view lost by the oldestherd node being recovered. After,
recoverer andrecovering nodes start to set up with processes or thré&ziartitions, which help
therecoverer to know the objects to be updated in each outdated node, ehdbrecovering node
knows which objects must be updated in itself. ThB&epartitions are also used in order to block
in each replica the current user transactions whose modibggtts conflict with itdDB-partitions.
Subsequently, theecoverer starts to recover eaglacovering node view by view. For each lost view,
therecoverer transfers the state of the modified objects during this viéwd, once the view has
been recovered in thecovering node, it notifies the recovery of this view to all alive nod&he
recovery process ends in eaelgovering node once it has updated all its lost views.

e As atransaction broadcast is performed spreading two gessamote andcommit—, it is possible
that a reconnected node receives only the second one, uirignthen the changes to commit [14]. In
this case the replication protocol will transfer the asstma writesets to these nodes. This behavior
implies that transaction writesets are maintained in threleenode until theommit message is
broadcast.

But this recovery protocol presents the following two pebk:

e Amnesia phenomenon. Instead of assumingctiash-recovery with partial amnesia failure model,
the system [9] does not handle it in a perfect way. This prmotdeises because once the replication
protocol propagates tlmmit message associated to one transaction, and it is delitbeeslystem
assumes that this transaction is being committed localbilineplicas. But this assumption even
using strong virtual synchrony [7] is not always true. Itaspible that a replica receives a transaction
commit message, but before applying the commit the replica craslkésis commented in [19] —the
basic idea is that message delivery does not imply corressage processing—. At this time, this
replica has not committed the transaction and has lostimenit message, but other replicas assume
that the transaction has been committed in all replicas @véme crashed one that has triggered a
view change event, because it receiveddb@mit message in the previous view. The problem will
arise when this crashed node reconnects to the replicaséehsybecause it will not have committed
this transaction and the rest of the system will not includeg the necessary recovery information
the updates performed by this transaction, only will canteansactions whossmmit message has
been propagated after the replica crash event, being inlp@$sr the recovering protocol to update
this transaction, arising then a problem of replicatecestatonsistency.

e Large MISSED table and redundant recovery information. If in the systherd are long-term
crashed nodes —meaning nodes failed during many views-henel are also high update rates it is
possible that thé/ 1SS E D table enlarges significantly with high levels of redundafidimation,
situation that is strongly discouraged. Redundant regoirdormation will appear because it is
possible that the same item has been modified in several vibngge the crashed nodes set is very
similar. In this case if an item is modified during severaingeonly knowing the last time —meaning
the last view— it was updated is enough. Therefore, it wilidteresting to apply algorithms that

avoid redundant recovery information, because the latgé6S £ D tables the greater the recovery
information management overhead becomes.

In the following section we will present and study differeqgproaches for solving these problems
improving the original recovery protocol.

4 Amnesia Support

In order to provide amnesia support different approachasbeaconsidered. These approaches can be
classified depending on which recovery information they. e one hand, there are the ones using the
broadcast messages —log-based-[5, 16, 14] and, on thenathéthere are the ones using the information
maintained in the database —version-based-[2, 5, 6, 15, 17]

But before talking about how amnesia support can be providén basic recovery protocol, it must be
considered how this amnesia phenomenon manifests. Int[hdkibeen already detailed how the amnesia
phenomenon manifests in replicated transactional systemdow it can be dealt with using log-based
recovery approaches. In such work, it is said that the arar@sgnomenon manifests at two different
levels:

e Transport level. At this level, amnesia implies that the system does not neloeewhich messages
have been received. In fact, the amnesia implies that received messages n@istantly stored are
lost when the node crashes, generating a problem when thaygte transactions that the replicated
system has committed but which have not been already coethiittthe crashed node.

e Replica level. The amnesia is manifested here in the fact that the nodgétsiwhich were the
really committed transactions.

Once it has been detailed the ways in which the amnesia nséife will present how it can be solved.
Obviously, depending on the recovery policy used, log-8a@seversion-based, the information that must
be maintained to solve the amnesia problem differs.

4.1 Logging Approach

If a logging approach is adopted, the information maintdimeorder to perform the amnesia recovery pro-
cess will be the broadcast replication messages, in thesteasmessages for each propagated transaction:
remote andcommit. And the amnesia recovery must be performed before statimgecovery of missed
updates —the latter will be done by the original recoventgool-. The amnesia recovery process will
consist in reapplying the messages belonging to non reafhyngitted transactions.

The first question that must be answered is who must storesfmrly the broadcast messages, in order
to overcome the amnesia at transport level. The replicalwdtarted the transaction is a possible solution.
But it forces the senders to control for each broadcastactimn which replicas have really committed it,
being only possible to discard the associated messageslbatiee nodes have acknowledged its commit.
Moreover, the amnesia recovery process can only be pertbmhen all senders are alive, in order to
have available the necessary messages. The other optdbmane interesting for an update everywhere
approach, is that each node stores persistently the recaiessages, maintaining them as long as the
associated transactiot},has not been committed and discarding them as sooni@steally committed
in the replica. But, it must be remarked that the messagéasp@recess must be performed atomically
inside the delivery process as already discussed in [19] #gt‘successful delivery” concept. Moreover,
messages belonging to aborted or rolled-back transaatioss be also deleted.

Once the amnesia phenomenon is solved at transport levslngcessary to manage the amnesia
problem at replica level. At this level the amnesia impliest the system can not remember which were the
really committed transactions. Even for those transastfonwhich the “commit” message was applied,
it is possible for the system to faduring the commit.

Then the amnesia recovery process in a replica will consistapplying the received and persistently
stored messages in this replica that have not been alreéetedebecause it implies that the corresponding

transactions have not been committed in the replica. Thessages are applied in the same order as they
were originally received.

It must be noticed, that some of the permanent stored andreatly deleted messages in a replica can
belong to really committed transactions whose messagesrahbeen deleted because the node crashed
before doing it. Thus, they would be applied twice. Thisaiiton will not be desired in two different
replication scenarios. On one hand, if the process refgitaropagates operations, because it will lead to
diverging states in different replicas for applying twite tsame operation. And on the other hand, when
the replication system propagates updates —target répliqgarotocols of this recovery protocol—, applying
twice a writeset does not lead to diverging states but it ogyi high overhead if writesets are large.

In order to avoid these undesired situations it is necegeananage extra information. One possibility
is that each replica has an extra database table where a tgwseoreated each time a new transaction
starts to be processed storing its identifier and assighiapgrocessing state value. Later, when its trans-
action commit is performed in the replica, the system muahgle atomically with the commit process its
state in the extra table mnmmitted. Subsequently, as soon as a transaction has been sudyessfiurmnit-
ted —and also in the rolled-back case—- in a replica, the isystast delete first its associated messages in
this replica and secondly its entry in the extra databade.tab

The information maintained in this table will be helpful imetamnesia recovery process in order to
distinguish which persistently stored messages must lpplied and which not. The idea, as it has been
said before, is to discard the messages that the system Wwawiddeleted in failure absence because they
belong to a committed transaction, but which have not beaseerdue to the replica crash.

It also must be noticed, that in this process is not needegty dhe remote messages whose asso-
ciatedcommit messages have not been received, because it implies tlgadiatie been committed in the
subsequent view, and therefore their changes are appli@thdhe recovery of its first missed view.

Finally, once the amnesia recovery process ends, the afiginovery protocol mechanism can start.

4.2 ldentifier Approach

This is a version-based amnesia recovery approach, thmerfis approach does not need to store propa-
gated messages and does not consider the amnesia at tipottaezel.

The background idea of this solution is that the reconnetett transfers to theecoverer node the
identifier of its last committed transaction. Then tieeoverer can transfer to theecovering node the
objects modified in subsequent committed transactiongbdfi@ system installed the new view after the
recovering node crash. Once threcoverer node has transferred this information the system can fattewy
recovery process as it is proposed in the original recovestopol.

But, in order to deploy this amnesia recovery approach,riesessary that replicas mark which is the
last transaction that modified each data object, being sacga mechanism that performs it. Moreover, it
is needed that each replica remembers which is the identifies last committed transaction, updating it
each time a new transaction is being terminated as an int&apaof its commit process. In spite of solving
this problem, two main considerations discourage the ugl@®approach.

On one hand, the amnesia recovery information for this tiecl@presents a finer granularity —transaction
identifier— than the missed recovery information —view iifesr— used by the original recovery protocol.
And this information must be generated always because wetknow when the amnesia problem could
appear.

On the other hand, and deriving from the first considerattomi)l be necessary to include the transac-
tion level granularity in thé/ 1SS E D table and create entries for views without crashed noddwer@tse
the system will maintain two different sets of recovery imfiation appearing a problem of redundant re-
covery information.

4.3 Summary

Which of these two approaches must be adopted? Both apm®auply an overhead during the normal
work in the system in order to generate and manage the inf@mthat will help the system to solve
the amnesia problem —one persisting messages, the othenatjeg metadata information at the database
level—.

Another consideration is that in the first approach the @dstode is the one who has the information
to perform the amnesia recovery process, while in the seoardt relies on the information maintained
in alive nodes.

Therefore, depending on the necessities of our system litb@idecided the approach that best fits
the recovery protocol requirements. It must be noticed ttiatversion-based approach can use the same
mechanism for generating the information needed in botbvery processes: amnesia and missed state.
Anyway, if to maintain the basic recovery protocol work wayai design requirement the only approach
that can be adopted is the logging one.

In this paper we adopt the logging one, because if the veitsémed approach is adopted, the original
recovery protocol taken as point of departure will need nrangifications or it will have a lot of redundant
information.

Once it has been detailed how the amnesia support can belptbwvi the recovery protocol, we will
continue with the second proposed improvement.

5 Compacting Recovery Information

In order to increase the performance at the moment of det@rgnand transferring the necessary infor-
mation for the synchronization of recovering nodes, we psapsome modifications based on packing
information that enhance the original recovery protocaladied in [1]. This could be done by compact-
ing the records in thé/1SSE D table, and with this, minimize the objects to transmit andpply them

in the recovering node, reducing thus the transmission amchsonization time.

Originally the M ISSED table stores in each record, i.e. view, the identifiers ofated objects
whose changes have been lost by crashed nodes. Therefse,itlentifiers can be repeated in different
MISSED view entries because these objects have been modified inrtmom@ views where there were
failed nodes.

These object identifiers can be packed due to the fact thaetowery information only maintains the
identifiers of updated objects. The state of these objeatstiieved by thaecoverer from the database
at recovering time. Moreover, if gcovering node,k, has to recover the state of an object modified in
different views lost byt it will receive as many times the item value, when transfigrits state only once
is enough. As a consequence, it is not relevant to repeatiémdifier of an updated object across several
views, being only necessary to maintain it in the last viewas modified and can be erased, if it is, in
other previous views.

During DB-partition generation, as user transactions brelded, there is no compacting process going
on in the system. Hence, possible generation of non-cob®epartitions is avoided. Once this metadata
has been transferred, establishing B®-partitions, the compacting process is restarted. This blocking
process is not necessary if the whole set of failed nodeseirptavious view is contained in the current
set of failed nodes. In fact, it must be remarked that thisavb@havior is already provided by the original
recovery protocol due to the establistigB-partitions, which block any update access.

We consider that the actions for the amnesia support arenpegfl during the execution of user trans-
actions. Whenever one (or more than one) node fails, theveeggrotocol starts the execution of the
actions to advance the recovery of failed nodes. To this end:

e When atransaction commits, the field which contains thetifiers of the updated objects/D_LIST,
will be updated in the following way:

1. For each object in thB/riteSet, theOID_LIST is reviewed to verify if the object is already
included in it or not. Ifitis not, it is included and is lookéak in previous viewsOID_LIST,
eliminating it from theOID_LIST in which it appears, compacting thus tbé D_LIST, i.e.
the information to transfer when a node recovers.

2. If as a result of this elimination, abI D_LIST is emptied, the content of the fieRlI T ES is
included in to the fieldbIT E'S of the next record, and the actual record in the taBleS S E D
can be eliminated.

When a node reconnects to a replicated system, the new viestédled and the actions for the amnesia
recovery are performed locally at the recovering node. iBhaslightweight process (i.e. only a few stored
messages have to be processed) in comparison to the dastdtasecovery process itself. The other nodes
know who is the recovering node, and every one performsliottad next actions:

1. TheMISSED table is scanned looking for the recovering node in the gl £S until the view
that contains the recovering node is found. The objects Fickthe recovering node needs to update
its state are the elements@f D_LIST of this view and the subsequent views.

2. At the recoverer node, the recovery information is senthtorecovering node according to the
original protocol.

3. Once the recovering node has confirmed the update of athiewpde is eliminated from tl &I TES
field in this view, and if it is the last item, also the recordtticontains this view is eliminated.

4. If a recoverer node fails during the recovering procdssn tanother node is elected to be the new
recoverer, according to the original protocol. And it wifeate the partitions pending to be trans-
ferred, according to the previous points, and then it wilifpen the object transfer to recovering
nodes, again as in the original protocol.

It is important to note that in a view change consisting injtie and leave of several nodes, we must
first update the information about failed nodes, and latecete the recovery process. As a final remark,
this compacting process will help the recovery protocol inimize the needed recovery information to
be transferred. However, its compression rate will depanthe user application. If replication updates
concentrate in few data items among several views the caimpaill have high rates, but if these changes
are highly scattered the compacting rate values will be low.

6 Simulation Results

We have simulated the compacting enhancement in order to lwigch level of improvement provides.
We have considered three replicated scenarios with 5, 9 amb@es each one. The replicated database
has 100000 data objects. All simulations start having gllicas updated and alive. Then, we start to
crash nodes one by one —installing a new view each time a nadbeas—, until the system reaches the
minimum primary partition in each scenario. At this poinbtdifferent recovery sequences are simulated.
In the first one, denoted as order 1, the crashed nodes anenested one by one in the same order as
they crashed, while in the second, denoted as order 2, tlzegeaonnected one by one but reversing the
order that they have crashed. In both cases, each time a rodenects a new view is installed, and
immediately the system starts its recovery, ending itswexgoprocess before reconnecting the following
one. In any installed view we assume that the replicatecesygterforms 250 transactions successfully,
and each transaction modifies 20 database objects. All atronlparameters are described in Table 1.

This simulation has not considered the costs of: managmgninesia problem, and recovery informa-
tion compacting. The amnesia problem, as it has been saiuehe$ solved using a log-based approach,
persisting the delivered messages during the replicationrk wand applying those not committed during
the amnesia recovery process. Thus, it implies two costs:irothe replication work and another in the
recovery work. The first cost is not considered because dadsappen in the recovery process. The sec-
ond one, although appears in the recovery process, is nsidayed because it is very low compared to the
recovery process itself —usually it will consist in applyifew messages (writesets) and in our simulation
are very small-. The recovery information compacting cestat taken into account because this work is
performed online, therefore its associated overhead zesahe replication work performance, but not the
recovery.

The simulation results show that the more views a crashed lnages the better the compacting tech-
nigue behaves, which is a logical result. In fact, when mpaates a crashed node misses the probabilities
of modifying the same object increases. Either in the Talda®in the Figure 1 we can observe the same
behavior. When a crashed node has lost only one view the attimgaechnique does not provide any

Parameter Value Parameter Value
Number of items in the database 100000 Time for a read 4ms
Number of servers 5,9, 25 Time for a write 6 ms
Transactions per view 250 Time for an identifier read 1ms
Transaction length 20 modified objects Time for an identifier write 3ms
Identifier size 4 bytes CPU time use for an I/O operation 0,4 ms
Object size 200 bytes Time for a point to point message 0,07 ms
Maximum message size 64 Kbytes Time for a broadcast message 0,21 ms
CPU time for a network operation 0,07 ms

Table 1: Simulator Parameters.

120000
g 100000 -
‘d-, _
® 80000
gL _
=S 60000
2 O 1
g 40000~
£
2 20000
0 T T T T T T T T T T T T T T T T T T
A O S N A R A
Norra R A R
orma
Nodes Number (Recovered Views)
m Compacted

Figure 1: Object Compactness

improvement because it has been unable to work. But, as etigeacrashed node misses more views the
compacting technique provides better results.

It must also be noticed that the original recovery protocalld arrive to transfer a greater number of
objects than objects has the original database. This obaaasuse it transfers for each lost view all the
modified (and created objects in this view) independendty #ire transferred when recovering other views
where these objects have been also modified. This situatiihnowr recovery protocol enhancement is
avoided. And in the worst case the proposed solution witifer the whole database because during the
inactivity period of the recovered node all the objects efdlatabase have been modified.

Obviously, we must say that the improvement provided by guoreach depends on the replicated
system load activity, the update work rate, and the chantgedsirate. For the first two ones, we can
consider in a general way that when higher they are bettecompacting technique behaves. This is
because the probabilities of modifying the same object ffeidint views increase. This consideration
drives us to the changed items rate, which is really the masbitant parameter. It tells us if the performed
updates are focused in few items or not. Then for our tecleiiis interesting that changes are focused
in as few items as possible. In fact, the worst scenario fot@chnique will be the one in which all the
modifications are performed in different objects.

| Order | Nodes | Recovered Views | Normal Time | Compacted Time |

1 [5] 2 [16533 | 16176 |
2 5 1 82.82 82.82
2 5 3 247.74 236.09

1 [9] 4 [33043 | 30745 |
2 9 1 82.52 82.52
2 9 3 247.60 235.92
2 9 5 413.18 376.31
2 9 7 578.32 501.90

1 [25 | 12 [99095 | 766.20 |
2 25 1 82.76 82.76
2 25 3 247.70 235.59
2 25 5 412.48 374.81
2 25 7 577.78 500.04
2 25 9 742.98 614.22
2 25 11 908.20 717.70
2 25 13 1073.80 812.69
2 25 15 1239.09 897.48
2 25 17 1404.16 973.79
2 25 19 1569.50 1042.92
2 25 21 1734.96 1104.76
2 25 23 1899.88 1160.78

Table 2: Recovery times in seconds.

As final conclusion, we can say that our enhanced recovetggobworks better in some of the worst
scenarios from a recovery point of view: when the crashecinas lost a lot of updates and the changed
items rate is not very high.

7 Related Work

For solving the recovery problem [3] database replicatiterdture has largely recommended the crash
recovery failure model use as it is proposed in [17, 6, 5,], WhBile process replication has traditionally
adopted the fail stop failure model as [4] proposes. The tiskfferent approaches for these two areas is
due to the fact that usually the first one manages large dadam@ts) and it adopts the crash recovery with
partial amnesia failure model in order to minimize the regnnformation to transfer.

The crash-recovery with partial amnesia failure model éidopmplies that the associated recovery
protocols have to solve the amnesia problem. This problesibban considered in different papers as [19,
10, 11] and different recovery protocols have presenteagvi@ydealing with. Th&€€LOB recovery protocol
presented in [5] and th@hecking Version Numbers proposed in [17] support amnesia managing it in a log-
based and version-based way, respectively. They are misttitat have been proposed for replicated
systems with the following characteristics: update evémgrg, eager and using total order delivery.

In regard to the compactness technique, [8] uses it in owe@ptimize the database recovery. In
this case, this technique is used to minimize the infornmagiae that must maintained and subsequently
transferred in order to perform the recovery processesh Saper also presents experimental results about
the benefits introduced by using this technique, reaching 32% time cost reductions.

The background idea of our compacting technique is verylairto the one used in one of the recovery
protocols presented in [17]. This protocol maintained inatablase table the identifiers of the modified
objects when there were failed nodes. Each one of thesetatigatifiers was inserted in a different row,
storing at the same time the identifier of the transactiorctvimodified the object. Therefore, when an
object was modified the system checked if its identifier wasaaly inserted in this table. If it has not,
the protocol created a new entry where inserted the identifigect and the transaction identifier. If it

already existed an entry with this object identifier, thetpcol simply updated in this entry the transaction
identifier. So, this recovery protocol also avoids redutid#onrmation, but it uses a more refined metadata
granularity —transaction identifier— than our enhancedtigmal —view identifier—.

8 Conclusions

In this paper we have reviewed the functionality of the avédirecovery protocol described in [2]. We have
enhanced it providing an accurated amnesia support antoioiing a compacting method for improving
its performance.

The amnesia support has been improved using a log-basaddaehwhich consists on persisting the
messages as soon as they are delivered in each node, irefaottist be persisted atomically in the delivery
process. This work way provides a similar support to the anpgsed in [19].

Our compacting technique avoids that any data object ifiengippears more than once in t¢SSED
table. Then this mechanism reduces the size of recoveryagesseither the ones that set up the DB-
partitions and the ones which transfer the missed values.

Tests have been made with a simulation model and the adwmtdghe enhanced recovery protocol
have been verified when comparing the results of both prtgotbe obtained results have pointed out how
our proposed compacting technique provides better reshlis the number of lost views by a crashed node
increases. Thus, our compacting technique has improveetiogery protocol performance for recoveries
of long-term failure periods.

9 Acknowledgements

This work has been partially supported by FEDER and the ShaviEC grant TIN2006-14738-CO02.

References

[1] J. E. Armendariz, F. D. Mufioz, H. Decker, J. R. Juamz] J. R. G. de Mendivil. A protocol for reconciling
recovery and high-availability in replicated databas&kst International Symposium on Computer Information
Sciences, Soringer, 4263:634—644, November 2006.

[2] J. E. Armendarizfiigo. Design and Implementation of Database Replication Protocols in the MADIS Archi-
tecture. PhD thesis, Depto. de Matematica e Informatica, UnisblRa de Navarra, Pamplona, Spain, Feb.
2006.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodma@oncurrency Control and Recovery in Database Systems.
Addison Wesley, Reading, MA, EE.UU., 1987.

[4] K. P.Birman and R. V. RenessBeliable Distributed Computing with the IS SToolkit. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1993.

[5] F. Castro, J. Esparza, M. Ruiz, L. IrGn, H. Decker, anBfioz. CLOB: Communication support for efficient
replicated database recovery. 18th Euromicro PDP, pages 314-321, Lugano, Sw, 2005. IEEE Computer
Society.

[6] F. Castro, L. Irin, F. Garcia, and F. Mufioz. FOBr: Asien-based recovery protocol for replicated databases.
In 13th Euromicro PDP, pages 306313, Lugano, Sw, 2005.

[7] G.V. ChockKler, I. Keidar, and R. Vitenberg. Group comnuation specifications: A comprehensive studZM
Computing Surveys, 4(33):1-43, 2001.

[8] J. P. Civera, M. I. Ruiz-Fuertes, L. H. Garcia-MufiondaF. D. Mufioz-Escoi. Optimizing certification-based
database recovery. Bih International Symposium on Parallel and Distributed Computing, |SPDC, Hagenberg,
Austria, 2007.

[9] F. Cristian. Understanding fault-tolerant distribditeystems Communications of the ACM, 34(2):56-78, 1991.

[10] R.de Juan-Marin, L. Irtn-Briz, and F. D. Mufioz-EgdRecovery strategies for linear replication| 8PA, pages
710-723, 2006.

[11] R.de Juan-Marin, L. IrGin-Briz, and F. D. Mufioz-EscBupporting amnesia in log-based recovery protocols. In
Euro American Conference on Telematics and Information Systems, EATIS, Faro, Portugal, 2007.

[12] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangéreplication and a solution. IACM SSGMOD
International Conference on Management of Data, pages 173-182, 1996.

10

[13] V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsrelated problems. In S. Mullender, ediistributed
Systems, chapter 5, pages 97-145. ACM Press, 1993.

[14] J. Holliday. Replicated database recovery using roadti communication. INCA, pages 104-107. IEEE Com-
puter Society, 2001.

[15] L. IrGn, F. Castro, F. Garcia, A. Calero, and F. Mufibazy recovery in a hybrid database replication protocol.
In XI1 Jornadas de Concurrencia y Sstemas Distribuidos, 2004.

[16] R. Jiménez-Peris, M. Patifio-Martinez, and G. Amn#on-intrusive, parallel recovery of replicated data. In
SRDS pages 150-159. IEEE Computer Society, 2002.

[17] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfigiion in replicated databases based on group commu-
nication. Inintl.Conf.on Dependable Systems and Networks, pages 117-130, Washington, DC, USA, 2001.

[18] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. g#donUnderstanding replication in databases and
distributed systems. IlCDCS page 464, Washington, DC, USA, 2000. IEEE Computer Saciety

[19] M. Wiesmann and A. Schiper. Beyond 1-Safety and 2-$dfatreplicated databases: Group-Safety.Pho-
ceedings of the 9th International Conference on Extending Database Technology (EDBT2004), 2004.

11

