
Adding Amnesia Support and Compacting Mechanisms

to Replicated Database Recovery

L. H. Garcı́a-Muñoz, R. de Juan-Marı́n, J. E. Armendáriz-Íñigo and F. D. Muñoz-Escoı́

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

{lgarcia, rjuan, armendariz, fmunyoz}@iti.upv.es

Technical Report TR-ITI-ITE-07/08

L
u

is
H

.G
ar

cı́
a-

M
u

ñ
o

z
et

al
.:

A
dd

in
g

A
m

ne
si

a
Su

pp
or

ta
nd

C
om

pa
ct

in
g

M
ec

ha
ni

sm
s

to
R

ep
li

ca
te

d
D

at
ab

as
e

R
ec

ov
er

y
T

R
-I

T
I-

IT
E

-0
7

/0
8





Adding Amnesia Support and Compacting Mechanisms to
Replicated Database Recovery

L. H. Garcı́a-Muñoz, R. de Juan-Marı́n, J. E. Armendáriz-Íñigo and F. D. Muñoz-Escoı́

Instituto Tecnológico de Informática - Universidad Politécnica de Valencia
Camino de Vera, s/n - 46022 Valencia, Spain

Technical Report TR-ITI-ITE-07/08

e-mail:{lgarcia, rjuan, armendariz, fmunyoz}@iti.upv.es

Abstract

Nowadays eager update everywhere replication protocols are widely used in replicated databases.
They work together with recovery protocols in order to provide highly available and fault-tolerant infor-
mation systems. This paper provides a general way for addingamnesia support and compacting mech-
anisms to these recovery protocols. The idea of these enhancements is to consider on one hand a more
realistic failure model scenario which fits better with the real world and on the other hand to minimize
the recovery cost obtaining then a more efficient recovery protocol.

1 Introduction

Database replication consists in maintaining identical copies of a given database at multiple network nodes.
This provides a higher performance, clients access their local replica or are forwarded to the less loaded
one; and availability: whenever a node fails, its associated clients are silently redirected to another available
one. Replication protocols can be designed for eager or lazyreplication [12], and for executing updates
in a primary copy or at all node replicas [18]. With eager replication we can keep all replicas exactly
synchronized at all nodes, but this could have an expensive cost. With the lazy alternative we can introduce
replication without severely affecting performance, but it can compromise consistency. Many replication
protocols are based on eager update everywhere with aread one, write all available (ROWAA) approach.
As we have briefly highlighted before, these replication protocols provide high availability, in the sense that
clients executing transactions at a node that fails are transparently forwarded to another available replica.
However, only a few of them deal with the possible reconnection of the failed node, which is managed
by recovery protocols [2, 5, 6, 14, 15, 16, 17]. The aim of the recovery protocols is to bring failed or
temporarily disconnected nodes back into the network as fully functional peers, by reconciling the database
state of these recovering nodes with that of the active nodes. This could be done by logging transactions
and transferring this log to recovering nodes so they can process missed transactions, or transferring the
current state of the objects that have been updated in the database since the recovering node failed.

In the design and development of a generic recovery protocolit is necessary to: consider the charac-
teristics of the used replication protocol; take into account that the recovery process must be as fast as
possible; have a minimum interference with the user transactions; and, to introduce the minimum system
overhead.

Previous works in this area include recovery protocols for replication protocols that make use of Group
Communication Systems (GCS) [7] and virtual synchrony [4],enriched view synchrony [17], recovery
based on logs [14], parallel recovery [16], lazy recovery [15], recovery algorithms based on configurable
logging for broadcast protocols [5], version-based recovery[6], and protocols that intend to be a little more
general for a group of replication protocols based on eager update everywhere and ROWAA [2].

1



This paper is focused in the recovery protocol for eager update everywhere replication protocols,
proposing some optimizations to the work presented in [2]. These enhancements include amnesia sup-
port, and a better performance reducing the amount of data tosave in the actions done before recovering
and the amount of data to transfer at recovering time. The main idea in the last case is to compact recovery
data eliminating redundant information.

The main contributions of this paper are: to add support for the amnesia in the original protocol, to
improve the performance of the original protocol compacting the necessary information for the recovery.
In addition, we provide a table with the results of a simulation, where the advantages of the compacting
approach are verified.

The rest of this paper is distributed as follows. In Section 2we provide the system model. Section
3 deals with the basic recovery protocol. In Section 4 we explain the necessary actions for the amnesia
support. Next, Section 5 relates the process of compacting recovery information. Later, Section 6 shows
the simulation results resumed in a table, followed by the related works in Section 7. In the final Section 8,
we provide our conclusions.

2 System Model

The original recovery protocol has been designed for database replicated systems composed by several
replicas –each one in a different node–. These nodes belong to a partially synchronous distributed system:
their clocks are not synchronized but the message transmission time is bounded. The database state is fully
replicated in each node.

This replicated system uses a group communication system (GCS) [7]. Point-to-point and broadcast
deliveries are supported. The minimum guarantee provided is a FIFO and reliable communication. A
group membership service is also assumed, whoknows in advance the identity of all potential system
nodes. These nodes can join the group and leave it either explicitly or implicitly by crashing, raising aview
change event. Therefore, each time a membership change happens, i.e. anytime the failure or the recovery
of one of the member nodes occurs, it supplies consistent information about the current set of reachable
members as a view. The group membership service combined with theGCS providesVirtual Synchrony
[4] guarantees, which is achieved usingsending view delivery multicast [7] enforcing that messages are
delivered in the view they were sent. Aprimary component [7] model is followed in case of network
partitioning.

The replicated system assumes thecrash-recovery with partial-amnesia model instead of the crash or
fail-stop model [13] for node failures. This implies that anoutdated node must be recovered from two “lost
of updateness”: forgotten state and missed state. This assumption supports a more realistic and precise
way to perform the recovery process. So the assumed model allows to recover failed nodes from their
previous crashing state maintaining their assigned node identifiers. Consequently, when a node crashes,
every active node must abort any transaction started by the failed node whose commit messages have not
been yet delivered. A similar behavior is adopted when the system can not go on because the progress
condition has been lost. In this situation, the nodes in minority (e.g. disconnected) must also abort the
started transactions whose commit message has not been yet delivered. Thus, the whole activity that was
not committed during the working life is aborted.

3 Original Recovery Protocol

The original recovery protocol presented in [1] has been thought for eager update everywhere database
replication protocols and proposes the use ofDB-partitions. In fact, it was originally designed for pro-
viding recovery support for theERP andTORPE [2] replication protocols. They are ROWAA, which use
voting techniques and propagate transaction writesets. Therefore, for each transaction that performs up-
dates, its replication execution is performed in two messages: first it is broadcast theremote message which
propagates the updates and secondly it is spread thecommit message which confirms the replicated execu-
tion. Their main difference is that the first one is based on reliable but unordered multicast using a dynamic

2



deadlock prevention scheme, while the last one is based on total order broadcast. This proposed recovery
protocol can be outlined as follows:

• The system has a database table namedMISSED, which maintains all the information that will
be needed for recovery purposes. Each time a new view is installed a new entry is inserted in
the MISSED table if there are failed nodes. Each entry inMISSED table contains: the view
identifier, the identifiers of crashed nodes in this view –SITES–, and the identifiers list of data
items modified during this view –OID LIST–. The two first ones are established at the beginning
of the view, while the last one increases as long as the view passes.

• When a set of crashed nodes reconnects to the replicated system, the recovery protocol will choose
one node as therecoverer with a deterministic functionoldest alive based on the metadata of the
recovery protocol. Then in a first step therecoverer transfers the metadata recovery information to
all reconnected nodes. This metadata information contains: the identifiers of modified objects, and
the crashed node identifiers in each view lost by the oldest crashed node being recovered. After,
recoverer andrecovering nodes start to set up with processes or threadsDB-partitions, which help
therecoverer to know the objects to be updated in each outdated node, whileeachrecovering node
knows which objects must be updated in itself. TheseDB-partitions are also used in order to block
in each replica the current user transactions whose modifiedobjects conflict with itsDB-partitions.
Subsequently, therecoverer starts to recover eachrecovering node view by view. For each lost view,
the recoverer transfers the state of the modified objects during this view.And, once the view has
been recovered in therecovering node, it notifies the recovery of this view to all alive nodes.The
recovery process ends in eachrecovering node once it has updated all its lost views.

• As a transaction broadcast is performed spreading two messages –remote andcommit–, it is possible
that a reconnected node receives only the second one, unknowing then the changes to commit [14]. In
this case the replication protocol will transfer the associated writesets to these nodes. This behavior
implies that transaction writesets are maintained in the sender node until thecommit message is
broadcast.

But this recovery protocol presents the following two problems:

• Amnesia phenomenon. Instead of assuming thecrash-recovery with partial amnesia failure model,
the system [9] does not handle it in a perfect way. This problem arises because once the replication
protocol propagates thecommit message associated to one transaction, and it is delivered,the system
assumes that this transaction is being committed locally inall replicas. But this assumption even
using strong virtual synchrony [7] is not always true. It is possible that a replica receives a transaction
commit message, but before applying the commit the replica crashes, as it is commented in [19] –the
basic idea is that message delivery does not imply correct message processing–. At this time, this
replica has not committed the transaction and has lost thecommit message, but other replicas assume
that the transaction has been committed in all replicas evenin the crashed one that has triggered a
view change event, because it received thecommit message in the previous view. The problem will
arise when this crashed node reconnects to the replicated system, because it will not have committed
this transaction and the rest of the system will not include among the necessary recovery information
the updates performed by this transaction, only will contain transactions whosecommit message has
been propagated after the replica crash event, being impossible for the recovering protocol to update
this transaction, arising then a problem of replicated state inconsistency.

• LargeMISSED table and redundant recovery information. If in the system there are long-term
crashed nodes –meaning nodes failed during many views– and there are also high update rates it is
possible that theMISSED table enlarges significantly with high levels of redundant information,
situation that is strongly discouraged. Redundant recovery information will appear because it is
possible that the same item has been modified in several viewswhere the crashed nodes set is very
similar. In this case if an item is modified during several views, only knowing the last time –meaning
the last view– it was updated is enough. Therefore, it will beinteresting to apply algorithms that

3



avoid redundant recovery information, because the largerMISSED tables the greater the recovery
information management overhead becomes.

In the following section we will present and study differentapproaches for solving these problems
improving the original recovery protocol.

4 Amnesia Support

In order to provide amnesia support different approaches can be considered. These approaches can be
classified depending on which recovery information they use. On one hand, there are the ones using the
broadcast messages –log-based– [5, 16, 14] and, on the otherhand there are the ones using the information
maintained in the database –version-based– [2, 5, 6, 15, 17].

But before talking about how amnesia support can be providedin the basic recovery protocol, it must be
considered how this amnesia phenomenon manifests. In [11] it has been already detailed how the amnesia
phenomenon manifests in replicated transactional systemsand how it can be dealt with using log-based
recovery approaches. In such work, it is said that the amnesia phenomenon manifests at two different
levels:

• Transport level. At this level, amnesia implies that the system does not rememberwhich messages
have been received. In fact, the amnesia implies that received messages non-persistently stored are
lost when the node crashes, generating a problem when they belong to transactions that the replicated
system has committed but which have not been already committed in the crashed node.

• Replica level. The amnesia is manifested here in the fact that the node “forgets” which were the
really committed transactions.

Once it has been detailed the ways in which the amnesia manifests we will present how it can be solved.
Obviously, depending on the recovery policy used, log-based or version-based, the information that must
be maintained to solve the amnesia problem differs.

4.1 Logging Approach

If a logging approach is adopted, the information maintained in order to perform the amnesia recovery pro-
cess will be the broadcast replication messages, in this case two messages for each propagated transaction:
remote andcommit. And the amnesia recovery must be performed before startingthe recovery of missed
updates –the latter will be done by the original recovery protocol–. The amnesia recovery process will
consist in reapplying the messages belonging to non really committed transactions.

The first question that must be answered is who must store persistently the broadcast messages, in order
to overcome the amnesia at transport level. The replica which started the transaction is a possible solution.
But it forces the senders to control for each broadcast transaction which replicas have really committed it,
being only possible to discard the associated messages onceall alive nodes have acknowledged its commit.
Moreover, the amnesia recovery process can only be performed when all senders are alive, in order to
have available the necessary messages. The other option, and more interesting for an update everywhere
approach, is that each node stores persistently the received messages, maintaining them as long as the
associated transaction,t, has not been committed and discarding them as soon as,t its really committed
in the replica. But, it must be remarked that the message persist process must be performed atomically
inside the delivery process as already discussed in [19] with its “successful delivery” concept. Moreover,
messages belonging to aborted or rolled-back transactionsmust be also deleted.

Once the amnesia phenomenon is solved at transport level, itis necessary to manage the amnesia
problem at replica level. At this level the amnesia implies that the system can not remember which were the
really committed transactions. Even for those transactions for which the “commit” message was applied,
it is possible for the system to failduring the commit.

Then the amnesia recovery process in a replica will consist in reapplying the received and persistently
stored messages in this replica that have not been already deleted, because it implies that the corresponding

4



transactions have not been committed in the replica. These messages are applied in the same order as they
were originally received.

It must be noticed, that some of the permanent stored and not already deleted messages in a replica can
belong to really committed transactions whose messages have not been deleted because the node crashed
before doing it. Thus, they would be applied twice. This situation will not be desired in two different
replication scenarios. On one hand, if the process replication propagates operations, because it will lead to
diverging states in different replicas for applying twice the same operation. And on the other hand, when
the replication system propagates updates –target replication protocols of this recovery protocol–, applying
twice a writeset does not lead to diverging states but it can imply high overhead if writesets are large.

In order to avoid these undesired situations it is necessaryto manage extra information. One possibility
is that each replica has an extra database table where a new entry is created each time a new transaction
starts to be processed storing its identifier and assigning theprocessing state value. Later, when its trans-
action commit is performed in the replica, the system must change atomically with the commit process its
state in the extra table tocommitted. Subsequently, as soon as a transaction has been successfully commit-
ted –and also in the rolled-back case– in a replica, the system must delete first its associated messages in
this replica and secondly its entry in the extra database table.

The information maintained in this table will be helpful in the amnesia recovery process in order to
distinguish which persistently stored messages must be reapplied and which not. The idea, as it has been
said before, is to discard the messages that the system wouldhave deleted in failure absence because they
belong to a committed transaction, but which have not been erased due to the replica crash.

It also must be noticed, that in this process is not needed to apply theremote messages whose asso-
ciatedcommit messages have not been received, because it implies that they have been committed in the
subsequent view, and therefore their changes are applied during the recovery of its first missed view.

Finally, once the amnesia recovery process ends, the original recovery protocol mechanism can start.

4.2 Identifier Approach

This is a version-based amnesia recovery approach, therefore this approach does not need to store propa-
gated messages and does not consider the amnesia at the transport level.

The background idea of this solution is that the reconnectednode transfers to therecoverer node the
identifier of its last committed transaction. Then therecoverer can transfer to therecovering node the
objects modified in subsequent committed transactions before the system installed the new view after the
recovering node crash. Once therecoverer node has transferred this information the system can followthe
recovery process as it is proposed in the original recovery protocol.

But, in order to deploy this amnesia recovery approach, it isnecessary that replicas mark which is the
last transaction that modified each data object, being necessary a mechanism that performs it. Moreover, it
is needed that each replica remembers which is the identifierof its last committed transaction, updating it
each time a new transaction is being terminated as an internal step of its commit process. In spite of solving
this problem, two main considerations discourage the use ofthis approach.

On one hand, the amnesia recovery information for this technique presents a finer granularity –transaction
identifier– than the missed recovery information –view identifier– used by the original recovery protocol.
And this information must be generated always because we do not know when the amnesia problem could
appear.

On the other hand, and deriving from the first consideration,it will be necessary to include the transac-
tion level granularity in theMISSED table and create entries for views without crashed nodes. Otherwise
the system will maintain two different sets of recovery information appearing a problem of redundant re-
covery information.

4.3 Summary

Which of these two approaches must be adopted? Both approaches imply an overhead during the normal
work in the system in order to generate and manage the information that will help the system to solve
the amnesia problem –one persisting messages, the other generating metadata information at the database
level–.

5



Another consideration is that in the first approach the crashed node is the one who has the information
to perform the amnesia recovery process, while in the secondone it relies on the information maintained
in alive nodes.

Therefore, depending on the necessities of our system it will be decided the approach that best fits
the recovery protocol requirements. It must be noticed thatthe version-based approach can use the same
mechanism for generating the information needed in both recovery processes: amnesia and missed state.
Anyway, if to maintain the basic recovery protocol work way is a design requirement the only approach
that can be adopted is the logging one.

In this paper we adopt the logging one, because if the version-based approach is adopted, the original
recovery protocol taken as point of departure will need manymodifications or it will have a lot of redundant
information.

Once it has been detailed how the amnesia support can be provided in the recovery protocol, we will
continue with the second proposed improvement.

5 Compacting Recovery Information

In order to increase the performance at the moment of determining and transferring the necessary infor-
mation for the synchronization of recovering nodes, we propose some modifications based on packing
information that enhance the original recovery protocol described in [1]. This could be done by compact-
ing the records in theMISSED table, and with this, minimize the objects to transmit and toapply them
in the recovering node, reducing thus the transmission and synchronization time.

Originally the MISSED table stores in each record, i.e. view, the identifiers of updated objects
whose changes have been lost by crashed nodes. Therefore, these identifiers can be repeated in different
MISSED view entries because these objects have been modified in two or more views where there were
failed nodes.

These object identifiers can be packed due to the fact that therecovery information only maintains the
identifiers of updated objects. The state of these objects isretrieved by therecoverer from the database
at recovering time. Moreover, if arecovering node,k, has to recover the state of an object modified in
different views lost byk it will receive as many times the item value, when transferring its state only once
is enough. As a consequence, it is not relevant to repeat the identifier of an updated object across several
views, being only necessary to maintain it in the last view itwas modified and can be erased, if it is, in
other previous views.

During DB-partition generation, as user transactions are blocked, there is no compacting process going
on in the system. Hence, possible generation of non-correctDB-partitions is avoided. Once this metadata
has been transferred, establishing theDB-partitions, the compacting process is restarted. This blocking
process is not necessary if the whole set of failed nodes in the previous view is contained in the current
set of failed nodes. In fact, it must be remarked that this work behavior is already provided by the original
recovery protocol due to the establishedDB-partitions, which block any update access.

We consider that the actions for the amnesia support are performed during the execution of user trans-
actions. Whenever one (or more than one) node fails, the recovery protocol starts the execution of the
actions to advance the recovery of failed nodes. To this end:

• When a transaction commits, the field which contains the identifiers of the updated objects,OID LIST ,
will be updated in the following way:

1. For each object in theWriteSet, theOID LIST is reviewed to verify if the object is already
included in it or not. If it is not, it is included and is lookedfor in previous viewsOID LIST ,
eliminating it from theOID LIST in which it appears, compacting thus theOID LIST , i.e.
the information to transfer when a node recovers.

2. If as a result of this elimination, anOID LIST is emptied, the content of the fieldSITES is
included in to the fieldSITES of the next record, and the actual record in the tableMISSED

can be eliminated.

6



When a node reconnects to a replicated system, the new view isinstalled and the actions for the amnesia
recovery are performed locally at the recovering node. Thisis a lightweight process (i.e. only a few stored
messages have to be processed) in comparison to the databasestate recovery process itself. The other nodes
know who is the recovering node, and every one performs locally the next actions:

1. TheMISSED table is scanned looking for the recovering node in the fieldSITES until the view
that contains the recovering node is found. The objects for which the recovering node needs to update
its state are the elements ofOID LIST of this view and the subsequent views.

2. At the recoverer node, the recovery information is sent tothe recovering node according to the
original protocol.

3. Once the recovering node has confirmed the update of a view,the node is eliminated from theSITES

field in this view, and if it is the last item, also the record that contains this view is eliminated.

4. If a recoverer node fails during the recovering process, then another node is elected to be the new
recoverer, according to the original protocol. And it will create the partitions pending to be trans-
ferred, according to the previous points, and then it will perform the object transfer to recovering
nodes, again as in the original protocol.

It is important to note that in a view change consisting in thejoin and leave of several nodes, we must
first update the information about failed nodes, and later execute the recovery process. As a final remark,
this compacting process will help the recovery protocol to minimize the needed recovery information to
be transferred. However, its compression rate will depend on the user application. If replication updates
concentrate in few data items among several views the compacting will have high rates, but if these changes
are highly scattered the compacting rate values will be low.

6 Simulation Results

We have simulated the compacting enhancement in order to know which level of improvement provides.
We have considered three replicated scenarios with 5, 9 and 25 nodes each one. The replicated database
has 100000 data objects. All simulations start having all replicas updated and alive. Then, we start to
crash nodes one by one –installing a new view each time a node crashes–, until the system reaches the
minimum primary partition in each scenario. At this point two different recovery sequences are simulated.
In the first one, denoted as order 1, the crashed nodes are reconnected one by one in the same order as
they crashed, while in the second, denoted as order 2, they are reconnected one by one but reversing the
order that they have crashed. In both cases, each time a node reconnects a new view is installed, and
immediately the system starts its recovery, ending its recovery process before reconnecting the following
one. In any installed view we assume that the replicated system performs 250 transactions successfully,
and each transaction modifies 20 database objects. All simulation parameters are described in Table 1.

This simulation has not considered the costs of: managing the amnesia problem, and recovery informa-
tion compacting. The amnesia problem, as it has been said before, is solved using a log-based approach,
persisting the delivered messages during the replication work, and applying those not committed during
the amnesia recovery process. Thus, it implies two costs: one in the replication work and another in the
recovery work. The first cost is not considered because does not happen in the recovery process. The sec-
ond one, although appears in the recovery process, is not considered because it is very low compared to the
recovery process itself –usually it will consist in applying few messages (writesets) and in our simulation
are very small–. The recovery information compacting cost is not taken into account because this work is
performed online, therefore its associated overhead penalizes the replication work performance, but not the
recovery.

The simulation results show that the more views a crashed node looses the better the compacting tech-
nique behaves, which is a logical result. In fact, when more updates a crashed node misses the probabilities
of modifying the same object increases. Either in the Table 2and in the Figure 1 we can observe the same
behavior. When a crashed node has lost only one view the compacting technique does not provide any

7



Parameter Value Parameter Value
Number of items in the database 100000 Time for a read 4 ms
Number of servers 5, 9, 25 Time for a write 6 ms
Transactions per view 250 Time for an identifier read 1 ms
Transaction length 20 modified objects Time for an identifier write 3 ms
Identifier size 4 bytes CPU time use for an I/O operation 0,4 ms
Object size 200 bytes Time for a point to point message 0,07 ms
Maximum message size 64 Kbytes Time for a broadcast message 0,21 ms
CPU time for a network operation 0,07 ms

Table 1: Simulator Parameters.

0

20000

40000

60000

80000

100000

120000

N
u

m
b

e
r 

o
f 

T
ra

n
s
fe

rr
e
d

 

O
b

je
c
ts

5(
1)

5(
2)

5(
3)

9(
1)

9(
3)

9(
5)

9(
7)

25
(1

)

25
(3

)

25
(5

)

25
(7

)

25
(9

)

25
(1

1)

25
(1

3)

25
(1

5)

25
(1

7)

25
(1

9)

25
(2

1)

25
(2

3)

Nodes Number (Recovered Views)
Normal

Compacted

Figure 1: Object Compactness

improvement because it has been unable to work. But, as long as the crashed node misses more views the
compacting technique provides better results.

It must also be noticed that the original recovery protocol could arrive to transfer a greater number of
objects than objects has the original database. This occursbecause it transfers for each lost view all the
modified (and created objects in this view) independently they are transferred when recovering other views
where these objects have been also modified. This situation with our recovery protocol enhancement is
avoided. And in the worst case the proposed solution will transfer the whole database because during the
inactivity period of the recovered node all the objects of the database have been modified.

Obviously, we must say that the improvement provided by our approach depends on the replicated
system load activity, the update work rate, and the changed items rate. For the first two ones, we can
consider in a general way that when higher they are better ourcompacting technique behaves. This is
because the probabilities of modifying the same object in different views increase. This consideration
drives us to the changed items rate, which is really the most important parameter. It tells us if the performed
updates are focused in few items or not. Then for our technique it is interesting that changes are focused
in as few items as possible. In fact, the worst scenario for our technique will be the one in which all the
modifications are performed in different objects.

8



Order Nodes Recovered Views Normal Time Compacted Time

1 5 2 165.33 161.76

2 5 1 82.82 82.82
2 5 3 247.74 236.09

1 9 4 330.43 307.45

2 9 1 82.52 82.52
2 9 3 247.60 235.92
2 9 5 413.18 376.31
2 9 7 578.32 501.90

1 25 12 990.95 766.20

2 25 1 82.76 82.76
2 25 3 247.70 235.59
2 25 5 412.48 374.81
2 25 7 577.78 500.04
2 25 9 742.98 614.22
2 25 11 908.20 717.70
2 25 13 1073.80 812.69
2 25 15 1239.09 897.48
2 25 17 1404.16 973.79
2 25 19 1569.50 1042.92
2 25 21 1734.96 1104.76
2 25 23 1899.88 1160.78

Table 2: Recovery times in seconds.

As final conclusion, we can say that our enhanced recovery protocol works better in some of the worst
scenarios from a recovery point of view: when the crashed node has lost a lot of updates and the changed
items rate is not very high.

7 Related Work

For solving the recovery problem [3] database replication literature has largely recommended the crash
recovery failure model use as it is proposed in [17, 6, 5, 1, 16], while process replication has traditionally
adopted the fail stop failure model as [4] proposes. The use of different approaches for these two areas is
due to the fact that usually the first one manages large data amounts, and it adopts the crash recovery with
partial amnesia failure model in order to minimize the recovery information to transfer.

The crash-recovery with partial amnesia failure model adoption implies that the associated recovery
protocols have to solve the amnesia problem. This problem has been considered in different papers as [19,
10, 11] and different recovery protocols have presented ways for dealing with. TheCLOB recovery protocol
presented in [5] and theChecking Version Numbers proposed in [17] support amnesia managing it in a log-
based and version-based way, respectively. They are protocols that have been proposed for replicated
systems with the following characteristics: update everywhere, eager and using total order delivery.

In regard to the compactness technique, [8] uses it in order to optimize the database recovery. In
this case, this technique is used to minimize the information size that must maintained and subsequently
transferred in order to perform the recovery processes. Such paper also presents experimental results about
the benefits introduced by using this technique, reaching upto 32% time cost reductions.

The background idea of our compacting technique is very similar to the one used in one of the recovery
protocols presented in [17]. This protocol maintained in a database table the identifiers of the modified
objects when there were failed nodes. Each one of these object identifiers was inserted in a different row,
storing at the same time the identifier of the transaction which modified the object. Therefore, when an
object was modified the system checked if its identifier was already inserted in this table. If it has not,
the protocol created a new entry where inserted the identifier object and the transaction identifier. If it

9



already existed an entry with this object identifier, the protocol simply updated in this entry the transaction
identifier. So, this recovery protocol also avoids redundant information, but it uses a more refined metadata
granularity –transaction identifier– than our enhanced protocol –view identifier–.

8 Conclusions

In this paper we have reviewed the functionality of the original recovery protocol described in [2]. We have
enhanced it providing an accurated amnesia support and incorporating a compacting method for improving
its performance.

The amnesia support has been improved using a log-based technique which consists on persisting the
messages as soon as they are delivered in each node, in fact they must be persisted atomically in the delivery
process. This work way provides a similar support to the one proposed in [19].

Our compacting technique avoids that any data object identifier appears more than once in theMISSED
table. Then this mechanism reduces the size of recovery messages, either the ones that set up the DB-
partitions and the ones which transfer the missed values.

Tests have been made with a simulation model and the advantages of the enhanced recovery protocol
have been verified when comparing the results of both protocols. The obtained results have pointed out how
our proposed compacting technique provides better resultswhen the number of lost views by a crashed node
increases. Thus, our compacting technique has improved therecovery protocol performance for recoveries
of long-term failure periods.

9 Acknowledgements

This work has been partially supported by FEDER and the Spanish MEC grant TIN2006-14738-C02.

References

[1] J. E. Armendáriz, F. D. Muñoz, H. Decker, J. R. Juárez,and J. R. G. de Mendı́vil. A protocol for reconciling
recovery and high-availability in replicated databases.21st International Symposium on Computer Information
Sciences, Springer, 4263:634–644, November 2006.

[2] J. E. Armendáriz-́Iñigo. Design and Implementation of Database Replication Protocols in the MADIS Archi-
tecture. PhD thesis, Depto. de Matemática e Informática, Univ. P´ublica de Navarra, Pamplona, Spain, Feb.
2006.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in Database Systems.
Addison Wesley, Reading, MA, EE.UU., 1987.

[4] K. P. Birman and R. V. Renesse.Reliable Distributed Computing with the ISIS Toolkit. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1993.

[5] F. Castro, J. Esparza, M. Ruiz, L. Irún, H. Decker, and F.Muñoz. CLOB: Communication support for efficient
replicated database recovery. In13th Euromicro PDP, pages 314–321, Lugano, Sw, 2005. IEEE Computer
Society.

[6] F. Castro, L. Irún, F. Garcı́a, and F. Muñoz. FOBr: A version-based recovery protocol for replicated databases.
In 13th Euromicro PDP, pages 306–313, Lugano, Sw, 2005.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A comprehensive study.ACM
Computing Surveys, 4(33):1–43, 2001.

[8] J. P. Civera, M. I. Ruiz-Fuertes, L. H. Garcı́a-Muñoz, and F. D. Muñoz-Escoı́. Optimizing certification-based
database recovery. In6th International Symposium on Parallel and Distributed Computing, ISPDC, Hagenberg,
Austria, 2007.

[9] F. Cristian. Understanding fault-tolerant distributed systems.Communications of the ACM, 34(2):56–78, 1991.
[10] R. de Juan-Marı́n, L. Irún-Briz, and F. D. Muñoz-Escoı́. Recovery strategies for linear replication. InISPA, pages

710–723, 2006.
[11] R. de Juan-Marı́n, L. Irún-Briz, and F. D. Muñoz-Escoı́. Supporting amnesia in log-based recovery protocols. In

Euro American Conference on Telematics and Information Systems, EATIS, Faro, Portugal, 2007.
[12] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. InACM SIGMOD

International Conference on Management of Data, pages 173–182, 1996.

10



[13] V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsand related problems. In S. Mullender, editor,Distributed
Systems, chapter 5, pages 97–145. ACM Press, 1993.

[14] J. Holliday. Replicated database recovery using multicast communication. InNCA, pages 104–107. IEEE Com-
puter Society, 2001.

[15] L. Irún, F. Castro, F. Garcı́a, A. Calero, and F. Muñoz. Lazy recovery in a hybrid database replication protocol.
In XII Jornadas de Concurrencia y Sistemas Distribuidos, 2004.

[16] R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. Non-intrusive, parallel recovery of replicated data. In
SRDS, pages 150–159. IEEE Computer Society, 2002.

[17] B. Kemme, A. Bartoli, and O. Babaoǧlu. Online reconfiguration in replicated databases based on group commu-
nication. InIntl.Conf.on Dependable Systems and Networks, pages 117–130, Washington, DC, USA, 2001.

[18] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replication in databases and
distributed systems. InICDCS, page 464, Washington, DC, USA, 2000. IEEE Computer Society.

[19] M. Wiesmann and A. Schiper. Beyond 1-Safety and 2-Safety for replicated databases: Group-Safety. InPro-
ceedings of the 9th International Conference on Extending Database Technology (EDBT2004), 2004.

11


