
A Compacted Recovery for Certification-Based

Database Replication
J. Pla-Civera, M. I. Ruiz-Fuertes, L. H. García-Muñoz, F. D.Muñoz-Escoí

Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia (SPAIN)

{jpla,miruifue,lgarcia,fmunyoz}@iti.upv.es

Technical Report TR-ITI-SD-07/01

J.
P

la
-C

iv
er

a
et

al
.:

A
C

o
m

p
a

ct
e

d
R

e
co

ve
ry

fo
r

C
e

rt
ifi

ca
tio

n
-B

a
se

d
D

a
ta

b
a

se
R

e
p

l
ic

a
tio

n
T

R
-I

T
I-

S
D

-0
7

/0
1

A Compacted Recovery for Certification-Based Database
Replication

J. Pla-Civera, M. I. Ruiz-Fuertes, L. H. García-Muñoz, F. D.Muñoz-Escoí

Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia (SPAIN)

Technical Report TR-ITI-SD-07/01

e-mail: {jpla,miruifue,lgarcia,fmunyoz}@iti.upv.es

Abstract

Certification-based database replication protocols
provide a good basis to develop replica recovery
when they provide the snapshot isolation level. For
such isolation level, no readset needs to be trans-
ferred between replicas nor checked in the certifi-
cation phase. Additionally, such protocols need to
maintain a historic list of writesets that is used for
certifying the transactions that arrive to the com-
mit phase. Such historic list can be used to transfer
the missed state of a recovering replica. We study
the performance of the basic recovery approach –
to transfer all missed writesets– and a version-based
optimization –to transfer the latest version of each
missed item, compacting thus the writeset list–, and
the results show that such optimization reduces a lot
the recovery time.

1 Introduction

Replication has been the regular solution for achiev-
ing high availability. But such level of availabil-
ity requires that faulty replicas were recovered.
Database replication is a special kind of highly-
available service since in this case replica recovery
implies the application of the missed updates, being
impossible a complete state transfer since it needs
a long time to be completed. Even transferring only
the missed updates, there is no easy way to complete
such recovery in a short time.

There have been many good works devoted to
database replication recovery [1, 3, 10, 13], but al-
most none of them has provided a rigorous perfor-

mance study of the proposed approaches. The aim
of this paper is to show that replica recovery is not
easy when the load of the replicated system is not
light, and that some optimizations can partially over-
come such problem. To this end, we have tried to
select the database replication kind [18] that pro-
vides the best support for developing an easy re-
covery: certification-based replication. In this repli-
cation variant a historic list of the applied write-
sets needs to be maintained in order to certificate
transactions (i.e., validate and locally decide in each
replica about the success of each terminating trans-
action). Such a historic writeset list can be stored
and used for transferring the missed updates to re-
covering replicas. Additionally, the resulting repli-
cation protocol does not need any voting termina-
tion [19] and provides very good performance if the
conflicting rate is low [18]. Moreover, for the snap-
shot isolation level, a certification-based replication
protocol is the natural solution, since it does not de-
mand readset transfers. So, such kind of replica-
tion protocol provides an ideal basis to research on
replica recovery and a basic recovery protocol can
be easily developed.

But such a basic recovery protocol does not pro-
vide good performance (i.e., a short recovery time).
So, some optimizations are needed in order to get
acceptable results. To this end, we have combined
a version-based approach, similar to those proposed
by other research groups (e.g., in some of the recov-
ery variants of [13]) and in some of our previous pa-
pers [3, 4] but specifically adapted to a certification-
based replication protocol. Such optimization intro-
duces a negligible overhead and shortens the recov-

1

ery time to only a 7,5% of its original length, with
a medium workload (8 clients in a 4-replica sys-
tem, with a crash interval that generates 1000 missed
writesets), as shown in Section 5.

The rest of this paper is structured as follows.
Section 2 presents the assumed system model. Sec-
tion 3 describes the replication protocol taken as the
basis for our recovery proposals. Section 4 thor-
oughly explains the recovery strategies. Section 5
discusses the performance results. Finally, Section
6 presents some related work and Section 7 gives the
conclusions.

2 System Model

We assume a partially synchronous distributed sys-
tem –where clocks are not synchronized but the
message transmission time is bounded– composed
by N nodes where each one holds a replica of a given
database; i.e., the database is fully replicated in all
system nodes. These replicas might fail according
to the partial-amnesia crash failure model proposed
in [6], since all already committed transactions are
able to recover but on-going ones are lost when a
node crashes. We consider this kind of failures as
we want to deal with node recovery after its failure.

Each system node has a local DBMS that is used
for locally managing transactions. On top of the
DBMS a middleware is deployed in order to provide
support for replication. More information about our
MADIS middleware can be found in [12, 14]. This
middleware also has access to a group communica-
tion service (GCS, on the sequel).

A GCS provides a communication and a member-
ship service supporting virtual synchrony [5]. The
communication service features a total order mul-
ticast for message exchange among nodes through
reliable channels. Membership services provide the
notion of view (current connected and active nodes
with a unique view identifier). Changes in the com-
position of a view (addition or deletion) are deliv-
ered to the recovery protocol. We assume a primary
component membership [5]. In a primary compo-
nent membership, views installed by all nodes are
totally ordered (there are no concurrent views), and
for every pair of consecutive views there is at least
one process that remains operational in both views.
The GCS groups messages delivered in views [5].
The uniform reliable multicast facility [9] ensures
that if a multicast message is delivered by a node
(faulty or not) then it will be delivered to all avail-
able nodes in that view. All these characteristics per-
mit us to know which writesets have been applied in

the context of an installed view. In this work, we use
Spread [17] as our GCS.

We use a replication protocol based on certifica-
tion [18], which does not require any kind of voting
in order to decide how a transaction should be ter-
minated (either committing or aborting).

3 Replication Protocol

We have selected the SIR-SBD protocol (see Figure
1) described in [14] for a case study of our recov-
ery mechanisms, because it is a good sample of a
certification-based [18] database replication proto-
col, providing the snapshot isolation level [2] and
thus avoiding the transfer of transaction readsets.

Initialization:
1. lastvalidated_tid := 0
2. lastcommitted_tid := 0
3. ws_list := ∅
4. tocommit_queue_k := ∅

I. Upon operation request for Ti from local client
1. If select, update, insert, delete

a. if first operation of Ti

- Ti.start := lastcommitted_tid
- Ti.priority := 0

b. execute operation at Rk and return to client
2. else /* commit */

a. Ti.WS := getwriteset(Tik) from local Rk

b. if Ti.WS = ∅, then commit and return
c. Ti.priority := 1
d. multicast Ti using total order

II. Upon receiving Ti in total order
1. obtain wsmutex
2. if ∃ Tj ∈ ws_list : Ti.start < Tj .end ∧

Ti.WS ∩ Tj .WS 6= ∅
a. release wsmutex
b. if Ti is local then abort Ti at Rk else discard

3. else
a. Ti.end := ++lastvalidated_tid
b. append Ti to ws_list and tocommit_queue_k
c. release wsmutex

III. Ti := head(tocommit_queue_k)
1. if Ti is remote at Rk

a. begin Tik at Rk

b. apply Ti.WS to Rk

c. ∀ Tj : Tj is local in Rk ∧ Tj .WS ∩ Ti.WS 6= ∅
∧ Tj has not arrived to step II
(this is analyzed by our conflict detector,
concurrently with the previous step III.1.b)
- abort Tj

2. commit Tik at Rk

3. ++lastcommitted_tid
4. remove Ti from tocommit_queue_k

Figure 1: SIR-SBD algorithm at replica Rk

This protocol uses an atomic multicast [9], i.e.,
a reliable multicast with total order delivery, and
thus it ensures that the writesets being multicast

2

by each replica at commit time are delivered in all
replicas in the same order. It uses two data struc-
tures for dealing with writesets:ws_list, which
stores all the writesets known (i.e., delivered) un-
til now, andtocommit queue, which holds those
writesets locally certified but not yet applied in the
local database replica. Moreover, for each transac-
tion, the attributesstart andend hold something
similar to the transaction start and commit times-
tamps, respectively. Due to the total order multi-
cast and the behaviour of the protocol, the second
counter is the same for a system transaction in all the
replicas, i.e., all the replicas identify with the same
commit timestamp a system transaction –this will be
handy when studying the performance graphs.

Note that we have tacitly assumed that the un-
derlying database system is supposed to be able to
check for conflicts, and to abort transactions the ac-
cess patterns of which violate the snapshot isolation
level rules.

This protocol is also based in the existence of a
block detection mechanism [14]. We have assigned
the following priorities to the transactions. All trans-
actions are initialized with a 0 priority level. They
get level 1 when they are multicast in their local
node or when their writeset is delivered in their re-
mote nodes. This ensures the correctness of this al-
ternative, since our blocking detection mechanism
aborts a transaction only if all of these conditions are
satisfied. Otherwise, no particular action is taken:

• The transaction to be aborted is local.

• It has not locally requested its commit; i.e., its
writeset has not been multicast.

• The transaction that causes its abortion has
been generated for applying a remote writeset.

This approach satisfies the correctness criteria of
the snapshot isolation level, since the writeset above
mentioned is associated to a transaction that has suc-
cessfully passed its global validation phase. It al-
ready has a commit timestamp which of course is in
the range of the [start, commit] interval of the local
transaction, since the latter has not yet requested its
commit.

4 Recovery Strategies

We describe a basic recovery in Section 4.1 and its
optimized version in Section 4.2. The optimization
consists in compacting the list of missed writesets,
maintaining only the last version of each missed
item.

4.1 Basic Recovery

As a general overview of the main goal of our re-
covery protocol, let us say that one node (recoverer)
will transfer the missed writesets to the recovering
node arranged by their respective versions. This
means that user application transactions executed on
the recovering node will run under GSI in a slower
replica. As it may be seen there are no restrictions
to execute user transactions in the replica and trans-
actions executing at other replicas will behave as it
nothing happens in the system. To achieve this we
take the ideas outlined in [7].

A recovering replicaRi joins the group, trigger-
ing a view change. As part of this procedure, the re-
covering protocol instance running inRi multicasts
anask-for-helpmessage indicating theversioni of
its last applied writeset –this version corresponds to
the commit timestamp of the last transaction applied
in that node. No message activity in the recovering
node is done –all messages delivered are ignored–
until this message is delivered. At this moment, the
recovering node starts to enqueue the total order de-
livered messages –with writeset information about
other transactions in the system sent by the rest of
the replicas– to be processed later.

In parallel to this, a deterministic procedure takes
place to choose a recoverer replica. The recoverer
replica (Rj), after receiving theask-for-helpmes-
sage, starts a recovery thread that sends a point-to-
point message with all the missed writesets start-
ing from versioni + 1, i.e., the recoverer node
sends the portion of itsws_list that covers from
versioni + 1 to the end of thews_list at that mo-
ment. Note that this approach guarantees that the re-
covering node will receive, on one hand, the write-
sets fromversioni + 1 to the last known version
of the recoverer at the moment of theask-for-help
message reception. On the other hand, the writesets
delivered in total order in the system after theask-
for-helpmessage will be enqueued in the recovering
message buffer. This way, it is ensured that the re-
covering node will not miss any writeset.

When this point-to-point recovery message is de-
livered to the recovery protocol, it stores this in-
formation in both thews_list and thetocommit
queue, as all these writesets were already certified
in the recoverer node. Then, the replication protocol
is ready to directly apply in the database the write-
sets in thetocommit queue and to start certifying its
own enqueued total order messages –delivered after
theask-for-helpmessage. Note that the certification
of the enqueued messages must wait for the recov-
ering information to be stored in thews_list, as

3

this structure is used in the certification process, but
it is not necessary to wait to the application of these
missed writesets in the database. In other words,
just after the storage of the transmitted writesets in
both data structures, the recovering node can act as
in normal mode.

This kind of recovery inherits the main ideas of
the second approach described in [13] ("Data trans-
fer within the database system") and, up to our
knowledge, had been already implemented and stud-
ied in other projects (e.g., GlobData, in order to add
recovery capacity to the protocols presented in [16],
but its performance results were only described in
an internal project report).

4.2 Compacting

This basic procedure can be enhanced by compact-
ing the point-to-point message in order to minimize
the transmission and application time. The point-
to-point recovery message has to provide all the
changes in the database made fromversioni + 1

to the current version of the recoverer node. This
information can be sent in a raw mode, i.e., send-
ing the writesets of all the transactions committed
during this period of time. Then, in the recovering
node, each writeset is applied in a new transaction –
like any other replica does in normal function. This
is the way used in the basic recovering protocol ex-
plained before.

All this procedure can be enhanced if the recov-
erer replica elaborates a special writeset composed
by the last version of each modified object in all
the transactions committed during the crash time,
i.e., if the same object was modified by more than
one transaction, only the last version of it would
be transmitted. This special writeset would be ap-
plied in a single transaction, which can greatly im-
prove the committing time, not only for being just
one –although possibly big– transaction, but also for
avoiding useless updates of the same object. This
way, compacting will reduce both the transmission
and the checking time as we will see later in the per-
formance results. The time needed by the recoverer
node to prepare this compacted message is not neg-
ligible, but we will see in the graphs that it does not
imply any noticeable overhead.

Note also that the regular function of the repli-
cation protocol is not compromised by this opti-
mization. Indeed, the recovering replica can start
processing transactions immediately. The write-
sets transferred in the recovery message are not
needed by the recovering replica in order to cer-
tify any new local writeset, since such new write-

sets should be certified against the writesets regu-
larly delivered in the new view in which such recov-
ering replica has rejoined the group. However, such
compacted writesets can be needed for certifying re-
mote transactions in such recovering replica, but its
compacted version is enough for such kind of certifi-
cation. Note that can exist long remote transactions
that have started before the recovery process started,
and their [start, commit] interval might overlap the
end of some transactions included in the compacted
missed writesets. Since at least the latest version of
each missed updated item is present in such com-
pacted set, all conflicts detectable with the origi-
nal writeset list will be detectable with such com-
pacted sequence. For instance, assume that there
were N transactionsT1, T2, ..., TN in the origi-
nal missed writeset list and that each writeset con-
tained M itemsa11, a12, ..., a1M , ..., aN1, aN2,
..., aNM , and each of these transactions has a con-
secutive logical commit timestamp (ti for Ti, being
ti+1=ti + 1). Without generalization loss, let us
assume that there are only M/2 items per writeset
that have not been updated in any of its successive
writesets (except in the last writeset of such com-
pacted list that is the single one that cannot be com-
pacted –their updated items are their trivially latest
versions in the recovery transfer set–), beingaiKi

those items (whereKi⊂{j ∈ N : 1 ≤j ≤M}
and |Ki| = M/2). So, if a given "future" trans-
actionTj was started between, e.g.T1 andT2, its
writeset should be checked against all writesets in
the range [T2, Tj−1]. Note thatTj has been ter-
minated afterTN , and as a result of this, all items
updated by all transactions in the range [T2, Tj−1]
are also included in its "compacted variant" since
N < j − 1, and our compacting process guarantees
that only items rewritten during the [T1,TN−1] inter-
val are removed from theT1..TN writeset sequence
(but if any item has not been rewritten, it appears in
such compacted sequence, and this guarantees that
exactly one version of all original writeset elements
appears in the compacted version). Additionally, we
have the advantage of a boost in the checking time,
since instead of having the complete sequence of
[T1, TN] writesets, we only have a compacted item
sequencea1K1

..aNKN
, as assumed above (i.e., half

of the items, in this hypothetical example).
Our optimization shares some of the characteris-

tics of the fifth recovery strategy described in [13]
("Restricting the set of objects to check") but fur-
ther optimizes that technique. To this end, our com-
pacting is able to restrict the objects being checked
without needing any additional table where the ob-
jects are being recorded during the crash interval.

4

Additionally, it still shares the advantage of getting
such set of items to be transferred without requiring
any read lock nor global read operation on the items
stored in the regular database tables. But, on the
other hand, it is partially dependent on the replica-
tion protocol approach (certification-based), and can
not be easily adapted to all other database replica-
tion variants (e.g., the active and weak-voting vari-
ants [18] do not need any historic writeset log).

5 Performance Study

In this work we intend to measure several aspects of
our recovery implementation:

• Under which circumstances (work load and
crash length) a failed node can recover and
reach the state of the other replicas.

• How long does it take to reach the state of the
other replicas.

• Compacting impact.

To accomplish the comparison, we use Post-
greSQL [15] as the underlying DBMS, and a
database with a single table with two columns and
10000 rows. One column is declared as primary key,
containing natural numbers from 1 to 10000 as val-
ues.

All protocols have been tested using our MADIS
middleware with 4 replica nodes. Each node has
an AMD Athlon(tm) 64 Processor at 2.0 GHz with
2 GB of RAM running Linux Fedora Core 5 with
PostgreSQL 8.1.4 and Sun Java 1.5.0. They are in-
terconnected by a 1 Gbit/s Ethernet. In each replica,
there is a varying number of concurrent clients (from
4 to 12). Each client executes an endless stream
of sequential transactions, each of one accessing a
fixed number of 20 items for writing, with a fixed
pause of 500 ms between each consecutive trans-
action. Each test begins with the execution of 500
global transactions, after that, a failure occurs in a
random replica. The failure lasts for a period in
which a varying number of global transactions is
executed by the other replicas. After this time, the
failed node restarts and begins the recovery process
until it reaches the state of any of the other replicas.
The test continues once the recovery ends, until the
completion of 500 more global transactions, when
the experiment finishes.

In the figures we show the evolution of nodes in
committing transactions in the system. All the trans-
actions have a global identifier –the end counter–
and must be committed locally in each replica. This

way, one global transaction requires a local transac-
tion in each replica, and we can know how quick a
node goes by seeing the last committed global iden-
tifier at that node (see the vertical axes in both Fig-
ure 2 and Figure 3). This way, each graph shows this
evolution in three nodes in the system: the failed, the
recoverer and another node. The bigger the slope
of that curve, the faster the node goes committing
global transactions.

The results obtained show that the basic recov-
ery technique was very poor in comparison with the
compacting approach. This was so noticeable that
we were forced to prevent new clients in the recover-
ing node when the basic technique was used, whilst
in the compacting approach such recovering replica
was able to serve clients during the recovery inter-
val.

The results obtained without compacting (see
Figure 2.a) and light load show that the recovering
node can easily reach the current state of the sys-
tem. We can see in the figure that all the replicas
have a linear evolution and when the failure occurs,
the failed node does not make any advance –and so
its line is horizontal. Then, when the recovery pro-
cess begins, the recovering node starts to progress
with more slope than the other nodes, i.e., it com-
mits more transactions per second, and thus it can
reach the global state and continue with the same
previous linear behavior.

With a medium load and medium crash length
(Figure 2.b), this evolution is slower and the graph is
not as clear as the previous one. The previous linear
behavior becomes in a curve due to the heavier load
and the recovering node needs more time to recover
due to the longer crash time.

Finally, with a heavy load and the maximum crash
time (Figure 2.c), the behavior is similar to that of
the previous case. The recovering node can reach
the global state faster due to the fact that the other
replicas are more loaded and, as commented before,
the recovering node has no clients after the crash.
This way, the recovering node can commit global
transactions faster than the others and so reach the
global state more quickly than when the load and
the crash time are medium.

As it can be seen in the graphs, the compacting
technique (see Figure 3) allows the failed replica to
quickly achieve a state close to those of the other
replicas. In all the tests, the recovering replica is
able to do so without too much delay. Specifically,
when the load and the crash time are small, we can
observe that the evolution of the recovering node af-
ter the crash is not as progressive as in the basic tech-
nique, but it has two phases. The first one is a big

5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160 180

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load (4 clients per node), short crash (500 transactions).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load (8 clients per node), medium crash (1000 transactions).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load (12 clients per node), long crash (2000 transactions).

Figure 2: Recovery without compacting

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160 180

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

a) Light load (4 clients per node), short crash (500 transactions).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

b) Medium load (8 clients per node), medium crash (1000 transactions).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

la
st

 c
om

m
itt

ed
 ti

d

time (s)

Recovering node
Recoverer node

Other node
Recovery start
Recovery end

c) Heavy load (12 clients per node), long crash (2000 transactions).

Figure 3: Recovery with compacting

6

step towards the global state due to the application
of the compacted writeset; and the second, the fi-
nal evolution during the application of the enqueued
messages delivered in the meanwhile. Comparing
with the previous basic technique, it can be noticed
that the recovery process lasts more or less like in
the first case with the basic technique (i.e., with light
load and a short crash interval). This shows that, in
such conditions, there are no noticeable differences
between the two techniques.

The next graph (Figure 3.b) shows the behavior of
the system when both the load and the crash time are
medium. The shape of the curves is similar to that of
a light load and the recovery process is much more
faster than with the basic technique. In the example
provided in our figures, with the basic technique 867
seconds were required to terminate the recovery, but
only 65 with the compacting optimization.

Finally, when the load and crash time are max-
imum (Figure 3.c), we can observe the non-linear
general behavior that we mentioned in the basic
technique graphs. The optimized technique still pro-
vides much better results than the basic approach
(45 sec, whilst the basic one required 563 sec).

To sum up, the optimization presented in this
work has been able to reduce the recovery time to
a 8% of the original recovery time when 12 clients
per node have been executed and 2000 transactions
were missed in the crash interval. Additionally,
the optimized recovery has been able to immedi-
ately serve incoming transactions in such recover-
ing replica, whilst in our basic recovery technique
this was not allowed. Moreover, with more than
2000 missed transactions and more than 12 clients,
the basic recovery technique failed to complete the
recovery, since the recovering replica was not able
to process the queue of received writesets on time,
and its receiving queue was continuously growing,
whilst the optimized version did not get overloaded
with twice such load.

6 Related Work

The use of version-based recovery protocols –the
same approach taken as the basis of our proposed
optimization– had been already suggested in the
fourth and fifth recovery variants of [13], but in
both cases still demanded a lot of effort for main-
taining the set of versions to be transferred to each
crashed replica. Either a version-based DBMS was
assumed or a special additional table needs to be
managed and updated each time a transaction com-
mits. We used the latter solution in [3, 4] but in

both papers such protocols were designed as a re-
covery approach for a replication system that did
not provide any standard isolation level. Those solu-
tions were developed in our COPLA system [8], and
such middleware was targeted to provide an object-
relational translation, with an object-oriented pro-
gramming interface where the traditional isolation
levels did not match. In the current paper, we have
optimized the version-based approach taking as its
basis a certification-based [18] replication variant in
order to support the snapshot [2] isolation level.

Only in [3] and [11] there are some performance
analyses of database recovery protocols. But, as al-
ready said, [3] is penalized by its non-standard fea-
tures (non-standard API and non-standard isolation
level), whilst the replication protocol assumed in
[11] was hybrid (could be configured either as ea-
ger or lazy, but always with a lazy core) and this
introduced a high abortion rate that was partially
compensated with an outdateness estimation func-
tion. In all cases, the advantages of both approaches
–and both were developed by our research group–
have been improved by the solution presented now
(shortest recovery time, and lowest abortion rate).

There have been many other works devoted to
database replica recovery [1, 4, 10, 13] but, up to
our knowledge, none of them has presented a per-
formance study of their proposed solutions.

7 Conclusions

We have presented a first basic recovery approach
for certification-based recovery protocols, analyzing
its recovery time when the system load varies. Up
to our knowledge this is the first performance study
for such kind of recovery techniques in the field of
database replication. Although certification-based
replication protocols provide a good basis for devel-
oping recovery protocols, this first basic approach
can be easily improved. A possible optimization
based on a missed update compacting has also been
presented. The performance study shows that the
overall recovery time can be reduced up to a 8%
of the recovery time of the basic approach (i.e., a
92% improvement), and such an improvement has
been obtained allowing the immediate acceptance
of incoming transactions in the recovering replica.
In the basic approach this quick transaction accep-
tance was not possible, since it prevents the rejoin-
ing replica from completing its recovery if the sys-
tem load exceeds 10 TPS in our middleware.

7

References

[1] J. E. Armendáriz-Iñigo.Design and Implementation
of Database Replication Protocols in the MADIS
Architecture. PhD thesis, Universidad Pública de
Navarra, Pamplona (Spain), Feb. 2006.

[2] H. Berenson, P. A. Bernstein, J. Gray, J. Melton,
E. J. O’Neil, and P. E. O’Neil. A critique of ANSI
SQL isolation levels. InSIGMOD, pages 1–10.
ACM Press, 1995.

[3] F. Castro, J. Esparza, M. I. Ruiz, L. Irún, H. Decker,
and F. D. Muñoz. CLOB: Communication support
for efficient replicated database recovery. InPDP,
pages 314–321, Lugano, Switzerland, Feb. 2005.
IEEE-CS Press.

[4] F. Castro, L. Irún, F. García, and F. D. Muñoz.
FOBr: A version-based recovery protocol for repli-
cated databases. InPDP, pages 306–313, Lugano,
Switzerland, Feb. 2005. IEEE-CS Press.

[5] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive
study. ACM Computing Surveys, 33(4):427–469,
Dec. 2001.

[6] F. Cristian. Understanding fault-tolerant distributed
systems.Commun. ACM, 34(2):56–78, 1991.

[7] S. Elnikety, F. Pedone, and W. Zwaenepoel.
Database replication providing generalized snap-
shot isolation. In24th IEEE Symposium on Re-
liable Distributed Systems, pages 73–84, Orlando,
FL, USA, Oct. 2005.

[8] J. Esparza, A. Calero, J. Bataller, F. Muñoz,
H. Decker, and J. Bernabéu. COPLA: A middleware
for distributed databases. In3rd Asian Workshop
on Programming Languages and Systems (APLAS
’02), pages 102–113, 2002.

[9] V. Hadzilacos and S. Toueg. Fault-tolerant broad-
casts and related problems. In S. Mullender, editor,
Distributed Systems, chapter 5, pages 97–145. ACM
Press, 2nd edition, 1993.

[10] J. Holliday. Replicated database recovery using
multicast communication. InNCA. IEEE-CS Press,
2001.

[11] L. Irún, F. Castro, F. García, A. Calero, and
F. Muñoz. Lazy recovery in a hybrid database repli-
cation protocol. InXII Jornadas de Concurrencia
y Sistemas Distribuidos, Las Navas del Marqués,
Ávila (Spain), 2004.

[12] L. Irún, H. Decker, R. de Juan, F. Castro, J. E. Ar-
mendáriz, and F. D. Muñoz. MADIS: a slim middle-
ware for database replication. In11th Intnl. Euro-
Par Conf., pages 349–359, Monte de Caparica (Lis-
bon), Portugal, Sept. 2005.

[13] B. Kemme, A. Bartoli, and O. Babaoglu. On-
line reconfiguration in replicated databases based
on group communication. InIEEE Int. Conf. on
Dependable Systems and Networks, pages 117–130,
Göteborg, Sweden, July 2001.

[14] F. D. Muñoz-Escoí, J. Pla-Civera, M. I. Ruiz-
Fuertes, L. Irún-Briz, H. Decker, J. E. Armendáriz-
Iñigo, and J. R. González de Mendívil. Managing

transaction conflicts in middleware-based database
replication architectures. InSRDS, pages 401–410.
IEEE-CS Press, Oct. 2006.

[15] PostgreSQL. The world’s most advance
open source database web site. Accessible in
URL: http://www.postgresql.org, 2005.

[16] L. Rodrigues, H. Miranda, R. Almeida, J. Martins,
and P. Vicente. Strong replication in the Glob-
Data middleware. InWorkshop on Dependable
Middleware-Based Systems (in DSN 2002), pages
G96–G104, Washington D.C., USA, 2002.

[17] Spread. The Spread communication toolkit. Acces-
sible in URL: http://www.spread.org, 2007.

[18] M. Wiesmann and A. Schiper. Comparison of
database replication techniques based on total order
broadcast. InIEEE Trans. Knowl. Data Eng. 17(4),
pages 551–566, 2005.

[19] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme,
and G. Alonso. Database replication techniques: A
three parameter classification. InSRDS, pages 206–
217, 2000.

8

