Recovery Protocols for Replicated Databases - A Survey *

Luis H. Garcia-Muioz, J. Enrique Armendériz—fﬁigo, Hendrik Decker, Francesc D. Muifioz-Escoi
Instituto Tecnoldgico de Informatica, Valencia, Espafia
{lgarcia, armendariz, hendrik, fmunyoz} @iti.upv.es

Abstract

The main goal of replication is to increase dependabil-
ity. Recovery protocols are a critical building block for re-
alizing this goal. In this survey, we present an analysis of
recovery protocols proposed in recent years. In particu-
lar, we relate these protocols to the replication protocols
that use them, and discuss their main advantages and dis-
advantages. We classify replication and recovery protocols
by several characteristics and point out interrelationships
between them.

Keywords: Replication, Databases, Recovery, Depend-
ability, Performance, Fault Tolerance, High Availability

1 Introduction

In replicated databases, identical copies of data items are
stored on different computers at different, possibly very dis-
tant sites. As a subarea of database theory and practice,
the field of replication is acquiring growing relevance. It is
increasingly used for supporting dependability, i.e., perfor-
mance, fault tolerance and high availability.

Among all available replicas, clients can improve their
throughput by transparently accessing the server replica that
is closest to them. Suitable protocols cater for mutual data
consistency at each replica. Whenever a server site fails or
the connection to it is broken, client transactions are redi-
rected to other available servers. For maintaining high avail-
ability, a need for efficient recovery procedures arises, for
bringing failed or temporarily disconnected nodes back into
the network of active servers as fully functional peers.

The recovery task basically consists in transferring the
updates lost during failure from one or more active nodes to
one or more recovering sites, without impeding the overall
system capability of providing normal application services.
Since recovery must re-establish consistent data, the devel-
opment of recovery protocols must take the idiosyncrasies
of the used replication protocols into account. Under this

*This work has been partially supported by the MCYT and MEC grants
TIC2003-09420-C02 and TIN2006-14738-C02.

premise, various recovery protocols have been proposed in
the literature, among them [15, 11, 13, 12,6, 7, 2].

Ideally, a good replication system should use mecha-
nisms that are simple (so as to reduce overhead), cope well
with network overload, maintain consistency, provide con-
tinuous service and avoid transaction rollbacks [11]. Simi-
larly, a good recovery protocol should be simple, efficiently
distribute the recovery work among available nodes, and
seamlessly allow for simultaneous concurrent transactions.
Additionally, both replication and recovery protocols must
take into account the concurrency of transactions, which in
many applications are required to comply with the ACID re-
quirement [3], i.e., the atomicity, consistency, isolation and
“durability” (a.k.a. persistence) of updates.

Typically, a synchronization mechanism for supporting
the updating of alive and recovering replicas is deployed,
since otherwise, recovery may become too complicated. A
straightforward way to synchronize replicas would be to in-
terrupt the ongoing application, but then, high availability is
sacrificed. However, with a suitable Group Communication
System (GCS) [8] and virtual synchrony [4], it is possible
to generate synchrony points between failed and recovering
sites, taking the set of messages delivered to non-failed sites
into account. The GCS provides a membership service and
a reliable multicast. Membership services maintain a list of
available, i.e., currently active and connected sites, and im-
plement the view concept [8], distinguishing between dif-
ferent states of the update history in which data items are
seen by mutually isolated groups of servers.

This work is focused on replication and recovery strate-
gies designed for the primary partition model [17, 8]. It
enforces that, in case of network partitioning, only the sub-
group that has a majority of the system replicas (if any) can
continue processing transactions. Thus, consistency is eas-
ily maintained since no other group of active replicas can
cause conflicts in the recovery procedures. Hence, there
is always a group of replicas that maintains an up-to-date
database state, and any other subgroup can recover by ob-
taining such state from some replica of the majority sub-
group. This model is typically assumed in recent works
about database replication and recovery. Partitionable mod-

els have been assumed in the field of mobile databases, but
we do not survey such kind of systems in this document.

The main goal of this work is to present a survey of al-
ternative options and strategies employed by replication and
recovery protocols developed in recent years. In that con-
text, also different concepts for GCSs and virtual synchrony
are reviewed. In sections 2 and 3, we characterize and clas-
sify different kinds of replication protocols in regard to their
interplay with recovery. In section 4, we narrow the focus
on replication protocols based on group communication and
discuss them broadly. In section 5, we conclude. As an
appendix, we present a tabled comparison that summarizes
and highlights significant characteristics as distinguished in
sections 2 - 4.

2 Basic Questions for Replication Protocols

Since recovery is usually embedded in the replication
process, the following questions must be answered (cf.
[10, 17, 18, 19]). The various concepts as mentioned and
labeled with acronyms below, are going to be explained in
subsequent subsections.

1. Server Architecture (A): are transactions executed in
primary-copy (P) or update-anywhere (U) mode?

2. Server Interaction (I): is interaction between replica
servers constant (C) or /inear (L)?

3. Transaction Termination (T): do transactions terminate
by voting (V) or non-voting (N)?

4. Update Propagation (U): is it eager (E) or lazy (L)?

Clearly, answers to some of the questions establish a
distinction between various kinds of replication protocols.
These are going to be used in 3 for classifying replication
protocols that host the recovery protocols as addressed in
section 4.

In general, protocols must take the objectives as enumer-
ated below into account.

1. Enable and optimize transaction concurrency. Two
basic kinds of concurrency control mechanisms are
distinguished as follows.

e Optimistic Concurrency Control. This assumes
that transaction conflicts are unlikely to occur
when shared data are accessed. In that case,
remote server resources can remain largely un-
tapped until transaction commit time. And if
conflicts do occur, then transactions are aborted
without further ado, so that they may be re-tried
later.

o Pessimistic Concurrency Control. Conflicts are
expected to occur, and remote resources must
be ready to be tapped on demand at any mo-
ment during transaction time. Unless a deadlock
occurs, pessimistic concurrency control makes
sure that transactions will terminate successfully.
Implementations of this pessimistic policy are
the well-known Two Phase Locking (2PL), Strict
2PL and Timestamping (which, however, is oc-
casionally used with optimistic control as well).

2. Minimize transaction abortions. This depends on the
used concurrency control (as indicated in the previous
point) and on the type of transactions, in the sense that,
the more write operations there are and the longer the
transactions last, the more conflicts are likely.

3. Maintain replica consistency. This is strongly though
not inextricably related to concurrency control. In gen-
eral, applications differ in their requirements of con-
sistency, so that the isolation level of transactions may

vary.
3 Classification of Replication Protocols

In [10], the following two modes for propagating up-
dates to replicas are distinguished:

1. Eager. All replicas are updated during transaction ex-
ecution time, i.e., no transaction is committed before
all network nodes are updated. This guarantees a very
high degree of replication consistency but increases
transaction response times and thus slows down per-
formance, due to the multiplicity of updates and mes-
sage rounds. Moreover, eager updating is not a viable
solution in mobile networks where nodes may be dis-
connected for extended periods.

2. Lazy. The updates of a transaction generally are exe-
cuted in a single dedicated replica, typically the nearest
one or the owner node of updated items. Updates are
propagated to all remaining replicas asynchronously,
which in general amounts to a separate transaction per
node. Thus, lazy update propagation permits a wide
variety of synchronization points, which however are
needed because temporary inconsistencies may easily
arise, due to the lack of synchrony.

According to [19], eager replication protocols can be
classified along to the following three dimensions.

1. Server Architecture: it determines where transactions
are executed in the first place. According to [10], the
two main options are

e Primary copy [13]. Transactions always are di-
rected to a designated node, which holds the “pri-
mary copy”’ of updated items. It is the only one
to actively process updates solicited by transac-
tions.

e Update anywhere [14]. Any replica can directly
process any transaction, i.e., transaction updates
can be directed to and processed by any replica.

2. Server Interaction. The degree of communication
among database servers at transaction time, i.e., the
amount of network traffic generated by a given repli-
cation protocol, is measured by the number of inter-
changed messages. Two cases can be distinguished:

o Constant Interaction. Independently of the num-
ber of operations in the transaction, a constant
number of messages is used to synchronize the
servers. Typically, protocols in this category
groups all operations of the transaction into a sin-
gle message [1, 2, 6,7, 11, 12, 13, 15].

e Linear Interaction. Here, each operation of a
transaction is dealt with separately. Operations
can be sent either as SQL statements or as log
records that contain the results of executing op-
erations in particular servers [4, 11].

3. Transaction Termination. This is related to how atom-
icity is guaranteed. Two cases can be distinguished:

o Voting Termination. Replicas are coordinated by
an extra round of messages. It can be as complex
as an atomic commitment protocol, or as simple
as a single confirmation message [2, 4, 14].

e Non-voting Termination. Nodes can decide on
their own to commit or abort a transaction [9, 16].

As indicated above, it is also important to take the net-
work’s partition model into account [4, 8, 17]. Mostly, the
primary partition model is employed. It enforces that, in
case of network partitioning, only the sub-group that has a
majority of alive nodes can continue to process transactions.
Thus, consistency is maintained easily, since no other group
of active servers can then cause conflicts. Hence, there al-
ways is a group of sites that maintains an up-to-date state of
replicas, and any other sub-group can recover by obtaining
this state from some replica of the majority sub-group.

In general, eager update algorithms are preferable to lazy
ones whenever replica consistency is achieved in primary
copy mode. However, if performance is key and consis-
tency can be compromised to some degree, better results
are obtained with lazy update algorithms, no matter whether
primary copy or update-anywhere algorithms are used. At
first sight, this may seem to contradict statements in [3, 5].

However, GCS-based protocols were not yet considered in
those older references, which only considered pessimistic
and optimistic concurrency control mechanisms with vot-
ing for transaction termination.

4 Recovery Protocols

For recovering a failed site, the actual state of the
database needs to be transferred to it. Only after that is
accomplished, the recovering site can again accept requests
from other sites or from clients. To transfer the current state,
three options can be distinguished: either to copy over the
whole database, or to only transfer incrementally the last
versions of all data items that were modified during the fail-
ure period, or to resend the update messages that did not
reach the failed node.

For classifying different kinds of recovery protocols, it is
useful to answer the following questions. Answers to each
of them are going to be addressed in more detail in subse-
quent subsections.

1. Transfer Model (TM): is it a full database transfer
(FT), or a version-based incremental transfer (IT) or
are lost messages resent (LR)?

2. Concurrency control during recovery: (a) Regarding
optimism (O), is it optimistic (O) or pessimistic (P)?
(b) Considering the number of managers (M), does it
use a single (S) or multiple (M) managers? (c) Is it
multi-versioned (V) (Y(es)/N(0))?

3. Recovery-work distribution (W): is it centralized (C)
or distributed (D)?

4.1 Recovery Protocols from Kemme,

Bartoli and Babaoglu

In [15] the authors propose solutions to transfer the state
of the database to the recovering replicas without interrupt-
ing the transaction process in the rest of the system. To this
end, they consider a replication model that applies eager up-
date anywhere, with a constant interaction and non-voting
transaction termination. Basically two ways for transferring
the recovery information are discussed: (a) the GCS regular
state-transfer when a view-change event arises, or (b) using
a specially tailored recovery protocol. Option (a) is imme-
diately discarded since the amount of state to be transferred
is very big (the entire database) and this is impractical.

We describe on the sequel the five recovery alternatives
presented in [15], plus the enriched view synchrony mech-
anism assumed in that paper and used in all its recovery
protocols.

4.1.1 Full Database Transfer

Despite discarding a database transfer when it is initiated by
the common GCS behavior (GCS are usually employed in
the active replication model; when a replica is added, they
transfer the current state of the replicated object to such re-
covering replica), transferring the entire database still has
sense in a few cases. Indeed, this management is manda-
tory for new replicas, but also attractive if the size of the
database is small or if most of data has been changed dur-
ing the failure interval. In this case we have a pessimistic
and centralized concurrency control with a unique manager.
The advantages of this method are its simple implementa-
tion and that it does not fully suspend the execution of the
application, since the write operations are only delayed on
the objects that are not yet transferred, and read transactions
are allowed. The disadvantages are that it is made under a
data transfer transaction schema that sets a read lock, which
is released when the data has been read, and transferred to
the recovering replica. Additionally, this could be highly
inefficient in cases where the failure time for a replica was
short.

4.1.2 Incremental Transfer Using Version Numbers

If the recovering replica was not active for a very short time,
or the data updates were few, may be more advisable to de-
termine which part of the database needs to be transferred.
To do so, global identifiers for the transactions are used,
so that the replica that will send the information for the re-
covery, can determine the last transaction that was correctly
executed in the recovering replica and with this, the pend-
ing updates to send. It has the same replication model ex-
posed before. For the recovery it uses the version-based
transference model, with pessimistic concurrency control, a
unique manager for the concurrency and the recovery work
is not fully suspend the execution of the application, the
write operations are only delayed on the objects that are not
yet transferred, only the changed data are transferred to re-
covering replicas and the read lock can be released immedi-
ately on the not changed data. The disadvantages are that it
is necessary to review the entire database to determine the
objects to transfer, which can cause overload. An updated
object is locked since the begin of the data transfer transac-
tion until it is either transferred or considered non- relevant.
Finally, note that not all the DBMSs can mark the objects
with version numbers (i.e., with the identifiers of the trans-
actions that generated their current values) as is required by
this recovery protocol.

4.1.3 Reducing the Amount of Data to Check

Using a so-called “reconstruction table” can alleviate the
disadvantages exposed in the previous subsection. It is a

data structure to store information about recently updated
data. A record in this table consists of a row identifier and a
global identifier for the last transaction that updated the row.
Each update is recorded in the reconstruction table, unless
all sites have successfully performed the update.

In contrast to the row level locks of the previously dis-
cussed protocol options, this one only needs to set a single
lock on the entire database. Once the incremental data set
to be transferred is determined, that lock is replaced by fine-
grained row level locks on the respective data items.

Replication is as before, and the incremental recovery
is accomplished with pessimistic concurrency control and a
unique centralized version-based manager site for control-
ling concurrency and the distribution of recovery tasks.

The main advantages are that version numbers are not
needed. Hence, its implementation is more independent
of the underlying DBMS, since labeling takes place mod-
ularly in a separate table that can be straightforwardly im-
plemented as a relational table. Also a scan of the entire
database is no longer needed, and non-relevant data are
locked only for a very short period. The disadvantages
are that the use of the reconstruction table demands addi-
tional space (that, however should be negligible even for
very small devices, which nowadays also dispose of vast
amounts of memory). And in spite of a relatively fast re-
lease of non-relevant data locks, the read-locking time span
of relevant data could be considerable.

4.1.4 Filtering the Log

Up to now, sites have been supposed to set read locks for
synchronizing the data transfer with concurrent transaction
processing. In the previously discussed optimization, lock-
ing of non-relevant data is reduced, but locks on relevant
data may still last long. To avoid locks, multiple versions
of data can be used, i.e., the use of multi-version concur-
rency control, as in PostgreSQL, Oracle and optionally
inMS SQL Server. In that case, transactions can continue
to update the database while earlier versions that have been
missed by the recovering site are transferred to it.
Recovery is version-based and incremental, concurrency
control is pessimistic, and a unique centralized version-
based manager site is used to distribute recovery tasks. Ad-
vantages are that transaction execution is not suspended,
data transfer is not needed and locks are fully avoided.
The disadvantage is that multiple data versions must be
kept, but that can be left to the underlying DBMS, as in
PostgreSQL, so that recovery is not burdened with that.

4.1.5 Lazy Data Transfer

Up to this point, all mentioned solutions use view changes
as synchronization points. That is a simple approach but has
several drawbacks:

1. The recovering site has to delay transaction process-
ing on data that must be transferred (not necessary in
version-based concurrency control).

2. If workload is high and data transfer takes long, then a
recovering site might not be able to store all transaction
messages delivered during data transfer, or it might not
be able to apply these transactions fast enough to catch
up with the rest of the system.

3. If the recoverer site fails, the recovering site needs to
be reset so that recovery process can re-start all over
again.

These drawbacks can be avoided if we decouple the syn-
chronization point from the view change.

Initially the recovering site discards the messages deliv-
ered in the view change and the recoverer site starts the
transfer. When the transfer is about to complete, the recov-
erer and the recovering sites determine a delimiter transac-
tion to be delivered in the view change. The recoverer site
then transfers all changes performed by transactions with an
identifier that is smaller than the identifier of the delimiter
transaction. The recovering site starts queuing transaction
messages with identifier greater than the identifier of the
delimiter transaction and finally applies these transactions
once the data transfer is completed. The latter is done in
several rounds. Only in the last round (when the delim-
iter transaction is determined), the transfer is synchronized
with concurrent transaction processing by setting appropri-
ate locks. The idea is to send in each round those data that
were updated during the data transfer of the last round.

Again, the version-based incremental transfer mode is
used for recovery, concurrency control is pessimistic, using
a unique centralized multi-versioned manager to distribute
recovery tasks. The significant variant of this protocol is
that the transfer of the actual database state takes place in
lazy mode. So, at least the failures at the recoverer site are
handled more efficiently. The disadvantage is that this pro-
tocol requires a reconstruction table to maintain the infor-
mation about recently modified data.

4.1.6 Enriched View Synchrony

EVS makes use of an online reconfiguration of recovering
nodes. Hence, the following key problem of all solutions for
recovery as discussed so far requires even more attention:
view changes can happen before reconfiguration is com-
pleted. View changes that occur during reconfiguration can
cause considerable complications. For example, suppose
that a site X acts as the recovering site of a node that joins
the primary view and that X leaves the present view before
reconfiguration is completed. At this point, only the node
X and the recoverer node knows that reconfiguration has
not been completed. All other nodes do not know whether

the recovering node is qualified to process transactions nor
which nodes need to continue with the reconfiguration pro-
cess. At worst, this could lead to a primary view in which
no member would be able to process transactions.

This complication is due to the fact that a member of a
primary view is not necessarily an up-to-date member. In
order to handle such situations, an extension of the tradi-
tional group communication abstraction is proposed in [15],
the enriched view synchrony (EVS). Instead of ordinary
views, EVS deals with so-called “enriched views”, also
called e-views. An e-view is a view with additional struc-
tural information. Sites in an e-view are grouped into non-
overlapping sub-views that in turn are grouped into non-
overlapping sub-view-sets. A view change then notifies
about a change in the composition of the e-view (sites that
appear to be reachable); such changes are performed auto-
matically by the EVS. Additionally, EVS introduces e-view
change events that notify about changes in the structure of
the e-view in terms of sub-views and sub-view-sets. In con-
trast to view changes, e-view changes are requested by the
application through dedicated primitives.

The characteristics of EVS can be summarized as fol-
lows: It maintains the structure of e-views across view
changes. E-view changes between two consecutive view
changes are totally ordered by all sites in the view. Finally,
if a site installs an e-view Fv and then sends a message m,
then any site that delivers m delivers it after installing E'v.
Note that the original definition of EVS does not consider
total order and uniform delivery. However, accommodating
these properties will be simple since they are orthogonal to
the properties of EVS.

EVS provides simpler algorithms in regard to virtual
synchrony. In particular, it provides the subsequently ex-
plained characteristics with respect to the incorporation of a
site into the primary view (even though it is the DBMS who
decides when to start the database transfer). When a site
joins a primary view, it is done locally, i.e., it does not mat-
ter whether an operational primary view exists or not. When
a recoverer site fails before terminating the data transfer to
the recovering site, the remaining sites in the primary sub-
view know that the recovering site is not updated, so it still
is a member of their set of sub-views, but not of their sub-
view. When a site enters the primary sub-view, all sites in
that view know that the site now is updated and operational.

In short, with EVS, we are able to encapsulate the recon-
figuration process, and the database system receives a more
realistic picture of what is going on.

4.2 Recovery Protocols from Holliday

In [11], protocols called Broadcast Writes, Delayed
Broadcast and Single Broadcast (the latter already pre-
sented in [1]) for recovery and replication are discussed.

According to the classification in [18] as discussed in sec-
tion 2, these are update-anywhere and non-voting proto-
cols. Concurrency control is performed by the DBMS with
strict two phase locking (Strict 2PL). These protocols use
a GCS providing virtual synchrony. Virtual synchrony is
used to ensure that messages are delivered in the same view
in which they were broadcast and that two sites that pass
to a new view have delivered the same set of messages in
the previous view. These protocols use total order multicast
primitives as provided by the GCS for controlling trans-
actions. The explicitly stated objective of these recovery
protocols is to minimize system downtime and disruption
caused by failures.

4.2.1 Single Broadcast Recovery

When a site fails, the multicast subsystem detects the fail-
ure and the membership protocol creates a new view from
which the failed site is excluded. The operational sites will
receive a view change message. If a commit request mes-
sage for a transaction 7" was delivered in the previous view,
then it has been delivered to all sites that comprised that
view and the transaction was committed or aborted by all
the sites in the view. When the failed site that was excluded
in the following view recovers locally, it will have obtained
the effects of 1" and all transactions that committed in the
view to which it belonged, but not later effects of any later
view.

Some GCSs with virtual synchrony provide recovery
mechanisms that log delivered messages, so that when a site
recovers, missed messages can be executed at this site. That
can be used when the Single Broadcast replication protocol
is employed. If the GCS does not provide for global re-
covery, some sites can be assigned to be loggers for update
messages. Note that messages can be logged intelligently.
For example, none of the messages from aborted transac-
tions need to be logged. Thus, the logger only stores view
changes and operations of committed transactions. Also
note that this change log is different from the recovery log
maintained by the DBMS at each site and is used for lo-
cal recovery. When a view change is indicated, the logger
makes an entry in the change log, recording membership
changes. Also delivered broadcast messages with transac-
tional updates are added to the change log. If the transaction
has read obsolete data, the corresponding entry is erased
and the transaction aborted. Otherwise, the transaction is
executed and committed.

The change log is used as follows. When the communi-
cation system detects a membership change and one or more
sites are added to the view, no update transaction messages
are delivered to it, or to any other site, until the new site
has exchanged messages with one logger and the logger in-
dicates that recovery is complete. The logger will then see

a view change and a request of the new site to be updated,
and will look for the last view in which the site to recover
was present. If the site has been absent for a long time and
the logger does not have registry of it or is a newly incorpo-
rated site, the full database must be transferred. Otherwise,
the transactions that were committed after the last view in
which the recovering site was a member, are sent to the site
in their commit order.

Here, the transfer mode clearly is either FT (cf. section
4) or, based on the log, incremental. Concurrency con-
trol during recovery is not needed because no transaction
is processed until the recovery is complete. Recovery is
centralized in a site that also acts as logger. The advantage
is that clear decision criteria can be applied for determin-
ing whether full database transfers are really necessary and
when they can be avoided by sending only the messages lost
since the last view to which the failed site belonged. The
disadvantages are that no transaction is processed until re-
covery is completed. Moreover, data versioning is required
so that write and commit messages can take notice of stale
data reads, in which case the transaction is aborted.

4.2.2 Delayed Broadcast Recovery

The delayed broadcast replication protocol decouples the
writeset broadcast from the commit broadcast for any trans-
action. This behavior raises some problems when recovery
is being considered. It might happen that the recovering site
was able to deliver the writeset for a particular transaction,
but not its commit or rollback message. So, that writeset
was lost when the site failed and should be retransmitted
now by the recoverer site if its commit message was deliv-
ered whilst the recovering site was crashed; i.e., messages
delivered in a view where the recovering site was up and
running might have to be remembered and resent by the re-
coverer.

Two possible solutions for the problems caused by the
writeset-commit decoupling are presented:

1. Log Update Method. The loggers must examine their
logs or the state of the database to determine if there
exists on progress transactions in the sites without fail-
ure. If there are, the logger should mark these transac-
tions so that when the commit or abort message is de-
livered, if the commit was successful, the Logger will
find the record containing the writes for that transac-
tion and copy it to the view change record. So when
a previously failed site rejoins to the group, the logger
begins with the execution of the writeset of the transac-
tions that were in progress when the site failed, follow-
ing with the operations of the transactions that were
originated and committed while the site was failed.
The commit order is the same for all non-aborted trans-
actions. The operations of the aborted transactions are

not included in the log since their effects are undone in
the sites without failure.

The transfer model for the database update used here
is log-based, during the recovery a pessimistic concur-
rency control is used with a single manager, the recov-
ery work distribution is centralized in a unique site.
This protocol has the advantage that it does not need
the data versioning used in the single broadcast proto-
col. The flow of messages is executed in the recovering
sites in the original order, recreating with this the same
conditions than in the non-failed sites. As a disadvan-
tage we have that the loggers must maintain the logs
of previous views whether or not a site fails in case of
there were write messages from the terminated trans-
actions in the those views. Additional work is done by
the sites that behave as loggers.

2. Augmented Broadcast Method. This second method
gives additional process to the sites of the on-going
transactions and requires a change in the recovery lock
manager algorithm. If a site .S; has any transaction
in course when a new view is installed (assuming that
such a view change implies that a replica has rejoined
the system), it modifies the commit protocol in a way
that the writesets are included in the commit mes-
sages for all transactions that broadcast their writesets
in a previous view; the sites that have been operating
through the change of view will ignore the writesets
and will directly process the commit messages. The
sites that are loggers will log the augmented message.
This extension is only needed by on-going transac-
tions; i.e., not for those that are started once the re-
covery process is finished.

Similar to the previous method, the transfer model
for the database update used here is log-based, dur-
ing the recovery a pessimistic concurrency control is
used with a unique manager, the recovery work distri-
bution is centralized. The advantages of this protocol
are that data versioning is not needed, the messages
are executed in the recovering sites in the original or-
der, recreating with this the same conditions than in
the non-failed sites as the previous protocol, but tries
to avoid the overload in the Loggers by distributing it
towards the sites that have on-going transactions. As
disadvantages we have that additional work is done by
sites of transactions in course and requires a change
to the recovery lock manager algorithm: the write re-
quests are included in the commit request.

4.2.3 Broadcast Writes Recovery

When transactions are long, the Broadcast Writes protocol
has a clear advantage over replica update protocols that do

not use multicast. We can assume that when a view change
occurs, there will be many on-going transactions and it is
better not to abort all of them at each view change. Due to
this, using database sites as Loggers instead of relying on
the recovery mechanism provided by the multicast system
could be of significant benefit. The Augmented Broadcast
global recovery method presented for the Delayed Broad-
cast protocol could be used for Broadcast Writes. In Aug-
mented Broadcast, only the final broadcast for a transac-
tion, the commit request, is affected by the need to aug-
ment it with the writeset. The method then works as it does
for Delayed Broadcast. When the Log Update method is
used with Broadcast Writes, the Logger must be careful
to remove messages from the log for a transaction that is
aborted for any reason. In the case of Delayed Broadcast,
only transactions that were aborted at the time of termina-
tion request had to be removed from the log. However, with
the Broadcast Writes protocol, transactions can be aborted
by sites because of deadlocks. If the write requests of two
or more transactions cause a deadlock, all operational sites
will abort one of the transactions (and the same transaction
is aborted at each site). The writes of the aborted trans-
action are not included in the update portion of the view
change record. However, the last write of the transaction to
be aborted could be logged and replayed to the recovering
site.

In these two last recovery protocols, the update transfer
mode is log-based. During recovery, pessimistic concur-
rency control with a unique manager based on 2PL is used;
the distribution of recovery tasks is centralized. The advan-
tages of these protocols are that they are capable of sup-
porting the most general transaction types in a distributed
database, without the need of data versioning. Moreover,
the second protocol tries to balance the work among log-
gers and the other sites. The disadvantages of the second
protocol are the same as for Delayed Broadcast, i.e., addi-
tional work is burdened upon on-going transaction process-
ing sites, and a change of the recovery lock manager algo-
rithm is needed: write requests are included in the commit
request message so that this information is entered into the
log. The disadvantage for the case of Log Update Method
is that loggers must take care of clearing messages from
the log for a transaction that is aborted for whatever reason
and not only those with an explicit abort message or whose
commit message is rejected.

4.3 Parallel Recovery from Jiménez,
Patino and Alonso

The proposal for doing the recovery task in a parallel
way exposed in [13] is based on a model that consists in a
set of database replicas in an asynchronous system. This
model is extended with a failure detector. Sites interchange

messages through a reliable channel, and no Byzantine fail-
ures are considered.

The system is structured in two layers. The first layer
has the replication middleware and relies on a GCS. In this
middleware the replication and recovery protocols are im-
plemented. Its GCS provides membership service, reliable
multicast and the notion of view. The second layer contains
the data being replicated, it is assumed that the data is di-
vided into disjoint partitions (or classes) and each one has
a master site. The transactions that access data in a given
partition should be local to the partition master site; i.e., if
a transaction requests processing in a non-master site, this
site forwards the request to the partition master site. A site
executes only its local transactions; for remote transactions
only installs their updates. The transactional system sup-
ports strict two phase locking.

The aim of the recovery protocol is to identify the missed
transactions in a failed but now recovering site, obtaining
these transactions from an active site and applying them
in such recovering site. Recovery is made on a partition
basis, i.e., each partition is recovered independently from
other ones. A partition can be in one of the next states:
(a) online: those partitions that are working normally; (b)
crashed: when its master site has failed; (c) recovering:
when such master site is restarted; (d) pre-online, when the
recovering has completed its first steps but is not yet online.

A partition can be elected as recoverer and it changes to
that state. The recovery procedure terminates with a for-
warding phase during which the partition is in forwarding
state. A partition can not process transactions from clients
during the crashed, recovering or pre-online states, in which
only can process transactions associated with the recovery.
When a recovering site joins to a working group a view
change is performed. As part of this procedure, the recover-
ing site indicates the log sequence number (LSN) of the last
committed transaction. Once a site is elected as recoverer
site, it sends the recovery information to the recovering site.
The recoverer site is able to process transactions even in the
recovery process.

This protocol can be extended to support parallel recov-
ery in several sites. Thus, the same partition master site is
able to multicast missed transactions to multiple recovering
sites (if more than one site are restarted at once). Addition-
ally, when a site is recovering, its missed transactions are
sent to it from all the master sites that have any transaction
to be recovered. So, recovery parallelism is improved from
both of these sides.

This recovery protocol assumes a replication protocol
based on a primary-copy server architecture, with constant
server interaction, non-voting transaction termination, and
eager update. The recovery protocol is log-based with a
pessimistic concurrency control with a single manager, and
with recovery work distribution.

The main advantages of this protocol are that when the
recovery task is performed in a parallel form supposes an
optimization in the transfer time and load balancing. The
single period in which the transactions are not processed
is during a view change, when the sites are blocked. This
protocol presents the disadvantages of processing the trans-
actions solely in the partition master site, and when failure
periods are long the information to transfer may be abun-
dant.

4.4 The COLUP Recovery Protocol

In [12] a configurable eager/lazy replication protocol
with a lazy recovery protocol is proposed. This replication
protocol, called Cautious Optimistic Lazy Update Protocol
(COLUP), uses the concept of node role, given special im-
portance to a node where a particular object is created. Such
node is referred to as the owner for all objects created by
its local applications. This owner node will be consulted
during the voting phase performed at commit time. In this
way the owner is the manager for the object accesses and is
responsible for coordinating the propagation of the last ver-
sions of the object. An identifier for the owner node is in-
cluded in the identifiers of the objects. For any object, a set
of nodes will maintain synchronous copies; i.e., consistent
replicas of its state. The other nodes that have a replica of
the object constitute the set of asynchronous nodes. In these
nodes the updates to the object will be eventually received,
once the updates have been committed in synchronous repli-
cas.

Conflicts between transactions are solved in an opti-
mistic way, using object versions and reviewing them dur-
ing the commit phase. As a result, a transaction is aborted if
it has read obsolete values that were updated by other con-
currently committed transactions. Thus, access to the ob-
jects is allowed with no need of locks. A disadvantage of the
lazy updates is that the probability of aborting transactions
gets increased. It is necessary then to establish a threshold
for the probability of aborting a transaction accessing obso-
lete object values. Thus, when a transaction tries to access
an object, this probability is calculated and compared with
the established threshold. As result, the algorithm obtains
an updated version for the objects that might be obsolete.
Using a high threshold the number of requested updates
is minimized, and the number of transactions executed in
the system is increased since the used resources for update
propagation are decreased. But this may cause an increase
in the number of aborted transactions because the number
of objects with obsolete values is also increased. This can
degrade the system productivity, so it is convenient the use
of an algorithm to dynamically adapt the threshold value to
an optimal value.

The recovery protocol considers the existence of a mem-

bership monitor that is executed on each node. The mon-
itor observes a preconfigured set of nodes, and notifies its
local node about the changes in this set. When the mem-
bership monitor detects a failed node a notification is sent
to each node that remains in the system. This causes an up-
date in the “list of alive nodes”. During the execution of a
transaction a number of messages must be sent to the dif-
ferent owners of the objects. If a message must be sent to
a failed owner, then it will be redirected to a new owner of
that object. Each node sends a message with the previous
grants conceded to the objects by the previous owner. The
new owner can process the requests as if it was the original
owner node of the object.

When an original owner node recovers from a failure, ev-
ery alive node is notified by its membership monitor. Then,
further messages must be sent to the original owner node. In
addition, the recovering node sends a message to the node
that managed its owned objects and with this, synchronizes
the activity in both nodes. A recovering node may receive
requests for objects that were updated during the failure
interval. In order to handle this situation, the recovering
node must consider each object of which it is owner like an
asynchronous replica until it is updated by a synchronous
replica. To ensure that a recovering node achieves a correct
state for its owned objects, an asynchronous low priority
process is executed. This process sends an update request
for all non-synchronized objects including the new objects
created during the failure period.

The replication protocol is eager update-anywhere, with
constant server interaction and voting transaction termina-
tion. Recovery uses a version-based transfer model. The
concurrency control is optimistic with a distributed man-
ager and multiversioned.

As advantages offered by the recovery protocol we can
find that the recovery task is totally supported by the hy-
brid replication protocol, so the recovery is part of the basic
algorithm and it is not necessary to add more code. An-
other advantage is that the updates are deferred until the
recovering node accesses obsolete data. With object ver-
sioning is not necessary the use of locks and the rate of
aborted transactions is reduced. As disadvantage we found
that the time of COLUP for processing transactions is usu-
ally greater than in pure lazy replication protocols.

4.5 CLOB: Short-Term Failure Recovery

CLOB (Configurable LOgging for Broadcast protocols)
described in [6] is defined as a framework for reliable broad-
cast protocols that are used as a basis for database replica-
tion. Its aim is to manage the logging of missed messages
in the broadcast protocol core, providing with this automatic
recovery for short-term failures, but discarding the log and
notifying the database replication protocol modules in case

of long-term outages. This kind of support can be easily
combined with version-based recovery protocols. To this
end, once a failure is detected the database replication pro-
tocol must follow its traditional version-based management
for recovery purposes, but it will be discarded if the replica
is able to rejoin the system soon. In this case, CLOB au-
tomatically propagates the missed update messages to the
recovering replica, which receives and applies them avoid-
ing any additional waiting time both in the source and des-
tination replicas. On the other hand, if the outage period
exceeds a given threshold, the reliable broadcast service
will notify the replication protocol about that, discarding
the message logs maintained by CLOB and delegating the
recovery management to the upper-layer components.

The replication protocol is eager update-anywhere, with
constant server interaction but would have to consider some
additional parameters to decide when the logged messages
can be eliminated. This protocol applies voting transaction
termination. The basic support for the recovery based on
logs will be identical if the transaction termination is voting
or non-voting. During the recovery, the transfer of the state
of the database is version-based in long-term failures, but is
log-based in short-term failures.

As advantages we can mention that it combines version-
based and log-based transfer of information for the recovery
depending on which is more advisable, without restricting
to a single model of transfer and being able to take advan-
tage of each one in its case. A minimum blocking time
for replicas that participate in the recovery is also obtained
when the log-based recovery is used. As disadvantages, it is
necessary to maintain the related information to both recov-
ery methods, and the transaction service time is increased
even with no failures because all messages must be saved in
persistent storage.

4.6 The FOBr Recovery Protocol

The recovery protocol explained in [7] FOBr, is designed
as a complement for the replication protocol FOB (Full
Object Broadcast), which is an optimistic eager update-
anywhere protocol and makes use of a GCS [8] membership
service. In this protocol the concept of replica role is used
and it can be:

1. Owner node: Initially it is the node where the object
was created; this is what we call physical ownership.
However, the node where a set of objects was created
might have crashed and the ownership migrates (log-
ical ownership). This owner node is the manager of
access confirmation requests (ACR) for that object.

2. Synchronous nodes: These nodes did not create the ob-
ject but are considered up-to-date replicas of it. They
provide us with fault tolerance.

Several transactions can be grouped in a session. Since
an ACR management is used, the session identifiers (SIDs)
include information about the node identifier where it was
initiated. The objects are identified in a similar way to the
sessions.

Objects are identified similarly as Sessions with object
identifiers (OIDs). These OIDs hold several information,
including the owner node, that identify them univocally
through all the nodes. Besides the OID, the consistency
protocol may need (FOB does) to maintain extra informa-
tion associated to each OID such as version numbers, times-
tamps,...

This metadata information will also need to be trans-
ferred when a recovering node receives its updated infor-
mation. When the user initiates a commit, the protocol per-
forms several operations before it is effectively applied into
the database:

1. It collects the transaction writeset and groups its OIDs
by their owner node.

2. An ACR is sent to each owner node of these writeset
objects. The owner nodes decide then whether to grant
or revoke the access to these OIDs. This sending is
performed sequentially and in ascending order of node
identifiers in order to avoid multiple abortions.

3. The node receives the ACR responses and:

e If any ACR is revoked, the transaction must
abort. If any of the other ACRs was granted, a
message must be sent to that node in order to re-
lease the grants.

o If they are all granted, the transaction is propa-
gated with a reliable broadcast and when deliv-
ered, it is committed in all the nodes. When a
node receives this broadcast: (i) It aborts other
locally conflicting sessions that are still in early
phases of operation; (ii) It applies the changes
into the database; and, (iii) It releases the ACRs
granted to the finished transaction.

The recovery protocol has two phases:

1. Collection phase: It includes all the events that happen
since the moment a node fails until the moment it joins
to the system. Two steps are taken:

e The remaining alive nodes decide in a determin-
istic way, which ones of them inherit the owner-
ship of the faulty node objects.

e A structure is created in each alive node in or-
der to hold the OIDs of all objects that will be
updated while these nodes are not present. The
structure needs to be stored persistently in order

to allow recovery in a total system failure. In this
structure a recovery list is also stored, and it saves
the updated OIDs that any site lost during a view
change.

2. Recovery phase: it includes all the steps followed by

the nodes of the system when a failed node initiates op-
erations again. In the recovery phase we distinguished
two roles for the participant nodes: the recovery node
that is the node that is trying to join the system and
needs to update its database, and the previously active
node that is the node that has the information to help
the recovering nodes to join the system.

The recovery phase begins when the previously-active
nodes receive a notification, by the membership ser-
vice, about the recovery of some previously consid-
ered faulty node. This notification has two parameters,
the recovering nodes list and the actual view number.
Then, the following steps are taken:

e The previously-active nodes build a
JOIN_UPDATE message to update the currently
owned objects that they know the recovering
nodes have missed. This JOIN_UPDATE message
is built following this procedure: (i) The recov-
ery list is checked to obtain the set of updated
OIDs that the node currently owns. (ii) The set
of OIDs’ states is retrieved from the database
and it is included in the message in order to
update the recovering node database. (iii) The
set of missed OIDs and network views is also
included, because the recovering node needs
to hold recovery information until the system
is complete. However, this information is not
transferred if the currently recovering node is the
latest one; i.e., no other faulty node exists when
it has finished its recovery.

e The recovering node waits until it has received
the JOIN_UPDATE message from all previously-
active nodes. As soon as a JOIN_UPDATE mes-
sage arrives, the recovery list is reconstructed
with the information provided by the message.
The recovering node will have created a transac-
tion to apply all the updates that it had to receive.
Once committed, the recovering node sends a
MERGED message to all the previously-active
nodes and waits for a NO ACT(NO ACT stands
for “node active”) response.

e When the previously-active nodes receive the
MERGED message they know that the recover-
ing node has applied all the remaining updates.
If the MERGED receiver was not the inheritor
of the recovering node objects, it simply assumes

that the recovering node has recovered the own-
ership. If the receiver is the inheritor, it has to
migrate this ownership packing the ACR granted
locks into a NO ACT message and send it to the
recovering node.

e Finally, when the recovering node receives the NO
ACT message, will be able to manage its objects
and the recovery is completed.

According to this, the replication protocol is eager
update-anywhere, with constant server interaction and with
voting transaction termination. The recovery protocol has a
version-based transfer model, the concurrency control is op-
timistic with a distributed manager and with multiversion.
The recovery work is distributed.

The advantages offered by the recovery protocol are that
minimizes the amount of data to transfer, balances the re-
covery work, and allows the execution of transactions dur-
ing recovery time. It has low space requirements. Its dis-
advantages are: (a) it complements a replication protocol
(FOB) with a non-standardized isolation level; (b) for each
transaction that commits, we must explore its writeset (and
save the OIDs contained in it) if there was any failed node.

4.7 Recovery Protocols from Armendariz

In [2] three eager update replication protocols are con-
sidered, and a recovery protocol that can be applied to all of
them is proposed. The first replication protocol called Basic
Replication Protocol (BRP) is based on the optimistic 2PL
(O2PL). As a result of the addition of improvements and
variations to protocol BRP, is presented the second protocol
called Enhanced Replication Protocol (ERP). This replica-
tion protocol reduces response times and transaction abor-
tion rates by removing the Two Phase Commit (2PC) rule
and the use of queues. Finally, the third replication proto-
col, named Total Order Replication Protocol with Enhance-
ments (TORPE), that makes use of the total order multicast
primitive provided by the GCS to ordering the transactions
executed by the system. The main idea for the recovery pro-
posed in [2] once a node re-joins the network after failure,
an alive recoverer node is appointed. It informs the join-
ing node about the updates it has missed during its failure.
Thus a dynamic database partition (hereafter DB-partition)
of missed data items, grouped by missed views, is estab-
lished, in recovering and recoverer nodes, merely by some
standard SQL statements. The recoverer will hold each DB-
partition as long as the data transfer of that DB-partition is
going on. Previously alive nodes may continue to access
data belonging to the DB-partition. Once the DB-partitions
are set in the recovering node, it will start processing trans-
actions, which are, however, blocked when trying to access
a DB-partition. Once the partitions are set in the recov-
erer, it continues processing local and remote transactions

as before. It will only block for update operations over the
DB-partition.

The three replication protocol are eager update-
anywhere with constant server interaction. BRP has voting
transaction termination, whilst ERP and TORPE have non-
voting termination. The recovery protocol is version-based,
the concurrency control during the recovery is optimistic
with a distributed manager and with multiversion. The re-
covery work is distributed.

The main advantages are that recovery is distributed, the
DB-partition in a recoverer site can be released even when
the recovery process is not concluded, and that transactions
can be accepted and committed in recoverer sites if they do
not interfere with the DB-partitions being recovered. The
disadvantage is that if DB-partitions are defined on the ba-
sis of each view modified items, an object may be trans-
ferred several times, to avoid this we must “compact” the
DB-partitioning.

5 Conclusion

Once this set of protocols has been surveyed, as a con-
cluding remark we advise to consider recovery algorithms
that use version-based management and that distribute the
recovery work among available sites to balance the work-
load during the recovery process. Very few replicated
database recovery systems are capable to combine these
techniques to reduce recovery times. When it has been
partially possible (as in [12, 13]), it was because replica-
tion protocols had some special characteristic (the use of a
primary copy schema in [13], that reduces flexibility and
compromises fault tolerance; and the use of lazy updates in
[12], that compromises consistency). The work presented
in [2] could be a good exception, but it has not presented
performance measurements that confirm its good theoret-
ical performance. This analysis will be used as a basis for
designing new recovery protocols, trying to combine the ad-
vantages of all surveyed protocols.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Ex-
ploiting atomic broadcast in replicated databases. LNCS,
1300:496-503, 1997.

[2] J. E. Armendariz. Design and Implementation of Database
Replication Protocols in the MADIS Architecture. PhD
thesis, Universidad Pudblica de Navarra, Pamplona Spain,
Febrero 2006.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

[4] K. P. Birman. Reliable Distributed Systems Technologies,
Web Services, and Applications. Springer, 2005.

Table 1. Classification of replication and re-
covery protocols

Replication Recovery

A|T | T|U|T™M| O | M|V | W
Ful |U|C|N|E|FT|P|S |N|C
DB
[15] Transfer|
Version| U|C|N|E |IT |P|S |N]|C
number
Restrict| U| C| N|E [IT |P | S | N | C
set of
objs.
Log U|C|IN|E|IT |P|S|Y|C
Filter
Lazy U|C|IN|L|IT |P|S|N|C
data
Transf.
Bcast | U|L|N|E|LR|P|S |N|C
writes
[11] Log
upd.
Bcast | U|L|N|E|LR|P|S |N|C
writes
Augm.
bcast
Delayedf U | C | N|E |[LR|P | S | N | C
bcast
Log
upd.
Delayedf U | C | N|E |[LR|P | S | N | C
bcast
Augm.
bcast
Single | U|C|N|E|1 |P|S|N]|C
bcast
[13] P|C|IN|E|LR|P|S|N|D
[12] ujCc|V|2|IT|O|M|Y|D
[6]| CLOB [U|C | N|E |3 O/ M|Y|C
[71]| FOBr |U|C |V |E|IT |O|M|Y|D
BRP U|C|V|E|IT |O|M|Y|D
[2]| ERP U|C|NJ|E|IT |O|M|Y|D
TORPE| U | C|N|E |IT |O|M|Y |D

not in the record of views in the logger.

It is configurable, and may be hybrid.

IT for long-term failures, and LR for short-term ones.

Considers full database transfer, is needed if a site is new or if it is

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

M. J. Carey and M. Livny. Conflict detection tradeoffs for
replicated data. ACM Trans. Database Syst., 16(4):703-746,
1991.

F. Castro, J. Esparza, M. 1. Ruiz, L. Irin, H. Decker, and
F. D. Mufioz. Clob: Communication support for efficient
replicated database recovery. In PDP, pages 314-321, 2005.
F. Castro, L. Irtin, F. Garcia, and F. D. Mufioz. Fobr: A
version-based recovery protocol for replicated databases. In
PDP, pages 306313, 2005.

G. Chockler, 1. Keidar, and R. Vitenberg. Group commu-
nication specifications: A comprehensive study. In ACM
Computing Surveys 33(4), pages 1-43, 2001.

S. Elnikety, F. Pedone, and W. Zwaenopoel. Database repli-
cation using generalized snapshot isolation. In SRDS, 2005.
J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers
of replication and a solution. In SIGMOD Conference, pages
173-182, 1996.

J. Holliday. Replicated database recovery using multicast
communication. In NCA. IEEE-CS Press, 2001.

L. Irdn, F. Castro, F. Garcia, A. Calero, and F. Muiioz. Lazy
recovery in a hybrid database replication protocol. In XII
Jornadas de Concurrencia y Sistemas Distribuidos, 2004.
R. Jiménez, M. Patifio, and G. Alonso. An algorithm for
non-intrusive, parallel recovery of replicated data and its
correctness. In SRDS, pages 150-159. IEEE-CS Press, 2002.
B. Kemme. Database Replication for Clusters of Worksta-
tions (ETH Nr. 13864). PhD thesis, Swiss Federal Institute
of Technology, Zurich,Switzerland, 2000.

B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfig-
uration in replicated databases based on group communica-
tion. In DSN, pages 117-130. IEEE-CS Press, 2001.

Y. Lin, B. Kemme, M. Patino-Martinez, and R. Jiménez-
Peris. Middleware based data replication providing snapshot
isolation. In SIGMOD Conference, 2005.

A. Ricciardi, A. Schiper, and K. Birman. Understanding
partitions and the 'no partition’ assumption. In 4th IEEE
Workshop on future trends in Distributed Computing Sys-
tems, pages 354-360, Lisbon, Portugal, Sept. 1993. IEEE-
CS.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Database replication techniques: a three parame-
ter classification. In SRDS, pages 206-215. IEEE-CS Press,
2000.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replcation in databases and dis-
tributed systems. In ICDCS, pages 464-474, 2000.

